
                                       AD_________________ 
 
 
Award Number:  W81XWH-04-1-0323 
 
 
 
TITLE: Task-Specific Optimization of Mammographic Systems   
 
 
 
PRINCIPAL INVESTIGATOR:          Robert Saunders, Ph.D. 

 
 
 
CONTRACTING ORGANIZATION:  Duke University 

    Durham NC 27710 
      
    
      
REPORT DATE:  March 2007 
 
 
TYPE OF REPORT: Annual Summary 
 
 
PREPARED FOR:  U.S. Army Medical Research and Materiel Command 
                               Fort Detrick, Maryland  21702-5012 
                 
 
DISTRIBUTION STATEMENT: Approved for Public Release;  
                                                  Distribution Unlimited 
 
 
The views, opinions and/or findings contained in this report are those of the 
author(s) and should not be construed as an official Department of the Army 
position, policy or decision unless so designated by other documentation. 
 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data 
needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this 
burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB 
control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY)
01-03-2007 

2. REPORT TYPE
Annual Summary

3. DATES COVERED (From - To)
15 Feb 04 – 14 Feb 07

4. TITLE AND SUBTITLE                        
Task-Specific Optimization of Mammographic Systems 

5a. CONTRACT NUMBER 
 

 5b. GRANT NUMBER 
W81XWH-04-1-0323 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
Robert Saunders, Ph.D. 

5d. PROJECT NUMBER 
 

 5e. TASK NUMBER 
 

  
E-Mail:  rss@duke.edu  

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER

Duke University      
Durham NC 27710

 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Medical Research and Materiel Command   

Fort Detrick, Maryland  21702-5012   
 11. SPONSOR/MONITOR’S REPORT 
        NUMBER(S)
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited  
 

13. SUPPLEMENTARY NOTES
  

14. ABSTRACT:  
This study sought to understand how different imaging parameters affect clinical diagnosis. First, it developed research tools for 
measurement and simulation of mammographic imaging.  Second, we applied these research tools and conducted a large 
human observer experiment to answer several clinically relevant questions.  The first question explored the impact of display 
resolution on the detection of breast masses and calcifications.  We found that different displays had little impact on clinical 
performance.  The second question explored the effect of reduced dose on the detection of breast lesions.  We found that the 
increased noise from reduced dose did impact radiologist performance.  Reducing the dose by half did not have a statistically 
significant impact on diagnostic accuracy, suggesting that mammographic dose could be reduced modestly with little impact on 
clinical performance.  These results have immediate implications for clinical breast imaging.

15. SUBJECT TERMS   
X-ray Imaging, Digital Imaging

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT

18. NUMBER 
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
USAMRMC  

a. REPORT 
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

 
UU 

 
      171   

19b. TELEPHONE NUMBER (include area 
code)
 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

mailto:rss@duke.edu


 

  

 
 
 
 

Table of Contents 
 

 
 

 

Introduction…………………………………………………………….…………......4 

 

Body…………………………………………………………………………………….4 

 

Key Research Accomplishments………………………………………….………11 

 

Reportable Outcomes………………………………………………………………..12 

 

Conclusions……………………………………………………………………….…..15 

 

References…………………………………………………………………………..…16 

 

Appendices………………………………………………………………………….…17 

   

   

   



 

4 

Introduction 
The primary screening tool for breast cancer is x-ray mammography.  While 
mammography reduces breast cancer mortality, it has areas for improvement as it 
misses many early-stage cancers.  This research seeks to improve the efficacy of 
mammography by optimizing the entire image chain for the detection of breast masses 
and microcalcifications.  This research can be split into two stages.  The first stage 
measures the imaging chain’s physical characteristics.  These characteristics include 
resolution and noise measurements of x-ray detectors and medical displays.  To better 
understand this physics, this research also has developed models of scattered 
radiation, as scatter is another major factor affecting resolution and noise.  This physical 
data is then applied in the second research stage.  The second stage modifies the 
resolution and noise of mammographic images.  These images are viewed by a 
combination of observer models and human observers to discover how image quality 
affects lesion detection and discrimination.  This observer data will help guide future 
optimization of mammographic systems.   
 

Body 
This section summarizes the research accomplished over the course of the entire grant 
period.  We have written the sections of the statement of work and then noted our 
research accomplishments in each area. 
 
Task 1:  Create a simulation procedure for the anatomical background of 
mammographic images 
 
1.1 Acquire normal mammograms obtained on digital systems for analysis 
 Working with colleagues from Emory University, we obtained 984 images 

acquired on an indirect flat-panel detector.  
 
1.2 Categorize the images into the four types of breast composition, as identified by 

the BIRADS system. 
Using the semi-automated technique proposed by Sivaramakrishna, et al in 
2001,1 we analyzed each of the mammograms in the above image database.  
This analysis gave us the percent of the breast area covered by fibroglandular 
tissue.  However, we were not confident that this analysis reproduced the 
radiologist’s assessment of breast density and did not use these categories in 
further analysis. 

 
1.3 Analyze the geometrical features of these breasts and characterize them with a 

fixed number of scalar parameters, such as size. 
 These two steps were included as they would aid in the creation on a routine to 

simulate mammographic backgrounds.  As part of the research for anatomical 
simulation, we searched the literature for previous research on mammographic 
background simulation.  We discovered and implemented the methods of 
Bochud, et al to emulate mammographic backgrounds by creating clustered 
lumpy backgrounds.2  These simulated backgrounds appeared similar to real 
mammographic backgrounds, but did not capture all of the complexity of real 
anatomy.  Therefore, we decided to use the mammographic data set obtained in 
1.1 for our subsequent simulation experiments.  
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1.4 Obtain mammograms from the Digital Database for Screening Mammography 
(DDSM) to analyze lesion characteristics 

 We selected images from the DDSM that contained oval circumscribed, oval 
obscured, irregular ill-defined, and irregular spiculated masses.  In addition, we 
selected images that contained fine linear branching and pleomorphic 
calcifications.  We segmented these mammograms into regions of 2.56 cm x 
2.56 cm centered on the mass or calcification. 

 
1.5 Analyze the features of specific lesion types 
 We analyzed the images obtained from the DDSM to create a model of the 

radiographic appearance of breast lesions.  This model was described in two 
publications (Appendices V and X). 

 
1.6 Create a program that can create images with breast anatomy and breast lesions 

that allows for user input of specific scalar parameters, such as size. 
 We created a program that allowed one to insert simulated masses and 

calcifications into normal anatomical backgrounds.  The details of this program 
were disclosed in two publications (Appendices V and X).  In addition, this 
program served a crucial role in our recent research on the impact of display 
image quality and impact of radiation dose, as disclosed in Appendices I-IV. 
 
As noted in 1.2 and 1.3, the simulated mammographic backgrounds lacked the 
complexity of real backgrounds.  We therefore used actual digital mammograms 
for our simulation experiments. 

 
1.7 Establish mapping technique to determine grayscale values of image using 

sigmoid curve transformation. 
 To conduct this task, an experienced mammographer reviewed the digital images 

obtained in 1.1 and window and leveled each mammogram to produce a clinically 
relevant appearance.  We recorded the parameters for each image and fit a 
sigmoid curve to each window and level function.  We then applied the 
appropriate transformation to each image in order to simulate the correct clinical 
appearance.  This stage was disclosed in two publications (Appendices IV, IX). 

 
Task 2:  Calibrate a computational observer (observer model) to emulate the 
detection task performed by mammographers.  
 
2.1 Create a set of anatomical images with the four different background types and 

different lesions types using the above simulation routine. 
We had previously acquired a set of normal mammograms that contained images 
with each of the four different background types, ranging from extremely dense to 
almost entirely fat-replaced.  Using this set of normal mammograms, we inserted 
simulated lesions using our lesion simulation routine3-5 to create a large image 
set with three different types of lesions, benign masses, malignant masses, and 
malignant microcalcifications.   

 
2.2 Modify the resolution and noise of the images to that consistent with various 

digital systems.  
Using our verified noise modification routine,6 we simulated the effects of imaging 
with reduced dose.  We created images with noise characteristics emulating 
three dose levels—full clinical dose, half dose, and quarter dose.  We altered the 
resolution of the images by displaying the images on three different medical 
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displays.  These displays included an LCD, a normal CRT, and a CRT with 
degraded resolution. 
 

2.3 Perform an observer performance experiment with five mammographers. 
Five experienced mammographers viewed the image set on three displays using 
a custom graphical interface.  This interface allowed the mammographers to rate 
the images as containing no lesion, a benign mass, a malignant mass, or 
microcalcifications.  As shown in the table below, the mammographers viewed 
2200 images, which included three resolutions levels (one for each display) and 
three noise levels corresponding to full, half, and quarter dose. 
 
Table. Distribution of images in each resolution and noise category.  The 
category of (Degraded CRT, Half Dose) was not evaluated in this experiment to 
reduce the duration of the human observer experiment. 

 Full Dose Half Dose Quarter Dose 
LCD 400 200 200 
Normal CRT 400 200 200 
Degraded CRT 400 -- 200 

 
 
2.4 Analyze the data from that experiment with Receiver Operating Characteristic 

Analysis. 
Receiver Operating Characteristic Analysis significantly slows down an observer 
experiment because of the detailed ratings it requires.  It also differs from the 
clinical paradigm by requiring radiologists to specify their confidence in a given 
decision.  In the clinic, radiologists generally make binary decisions as to whether 
a lesion is present or not.  Therefore, this experiment did not use Receiver 
Operating Characteristic Analysis, but rather used a new categorical rating 
paradigm that minimized reading time and more closely emulated clinical 
decision making.   
 
We are analyzed the observer data to find overall classification accuracy at 
different dose levels and on different displays.  As well, the data was analyzed for 
performance at specific clinical tasks, such as the detection of microcalcifications 
and discrimination of benign and malignant masses.  Resolution and noise was 
considered separately and jointly to understand how these two parameters jointly 
affected lesion detection, discrimination, and decision-making time.  Refer to the 
Appendix I-IV for four publications describing this analysis.  

 
2.5 Use several computational observers to examine the image set. 

We found that this image set was not appropriate for observer model calculations 
as it did not model resolution, but rather used displays for resolution modification.  
Therefore, we combined this step with specific aim 3.3, which analyzed images 
with different simulated noise and resolution characteristics.  
 

2.6 Using the observer model that best matches the performance of the 
mammographers, calibrate that model to the human performance. 
As described by the publication in Appendix I, we did not find any one observer 
model completely matched human performance at all detection and 
discrimination tasks.  Observer model performance did not fully simulate human 
performance.  Observer model results showed drops in detection and 
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discrimination with increased display blur, while human observers did not.  
Computational observers could be more sensitive to display blur than human 
observers and therefore further work must be conducted to optimize observer 
models.  The NPWE model had difficulty detecting microcalcifications.  This 
deficiency in the NPWE observer has also been noted in a previous study. 7  
These points suggest that further work is still needed in optimizing observer 
models to fully replicate human performance. 

 
Task 3:  Create an empirical model that relates the resolution and noise of a 
digital mammographic system to the detectability of breast lesions.  
 
3.1 Compile a list of MTFs and NPS for commercial radiographic systems, including 

image processing algorithms and displays. 
We have conducted studies to directly measure the physical characteristics of 
mammographic systems.  Please refer to two papers in Appendices VIII and XI 
for details about one study where we measured the performance of a clinical 
prototype digital mammographic system.  We extended that work by conducting 
a study that measured the resolution and noise of five medical displays, 
disclosed in Appendix VI.  

 
3.2 Create a set of 1500 simulated anatomical images with added masses and 

microcalcifications.  The resolution and noise of these images will be modified 
according to the various configurations collected above.  
An image set of 2200 images was created using similar methods as the one 
created under specific aim 2.1.  In this case, an image set was created that had 
three different resolution levels, divided among images with resolution 
corresponding to an LCD, a normal CRT, and a degraded CRT, and three 
different noise levels according to the level of noise at full dose, half dose, and 
quarter dose.  The noise of the images had been modified according to the 
previously measured NPS of a digital mammographic detector and the 
relationship between dose and noise magnitude.8  The resolution of the images 
was modified according to the measured resolution of the medical display 
devices using a previously verified routine.6, 9 

 
3.3 Use the observer model to examine each image and determine the detectability 

of masses or calcifications in each resolution and noise configuration. 
Three different observer models (Non-Prewhitening Matched Filter with Eye Filter 
(NPWE) observer, the JNDMetrix Visual Discrimination Model, and a 
Channelized Hotelling Observer (CHO) with Gabor channels) viewed all of the 
images in this set to determine the detectability of benign masses, malignant 
masses, and microcalcifications at each noise/resolution configuration.  In 
addition, we examined the impact of resolution and noise on the discriminability 
between benign and malignant masses.  The NPWE and JNDMetrix results were 
disclosed in Appendix I. 

 
3.4 Develop a fitting method for MTF and NPS curves that reduces the curves to 

scalar parameters 
After obtaining the resolution and noise characteristics, we fit each of them with a 
multi-parameter exponential function.  This provided us with a functional form for 
the resolution and noise data, which was used by the resolution and noise 
modification routines. 
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Task 4:  Confirm the empirical model with a small observer performance 
experiment.   
 
4.1 Create a set of 100 anatomical images from the simulation routine with lesions 

inserted into 60% of the images. 
4.2 Modify the images to the noise and resolution properties of three different digital 

mammographic systems. 
4.3 Perform an Observer Performance experiment with these images with three 

mammographers 
4.4 Compare the mammographers’ performance on these images to that predicted 

by the empirical model.  Use statistical power calculation to insure the statistical 
significance of the results. 

 
As noted in specific aim 2.6 and in Appendix I, the observer model performance differed 
greatly from human observer performance.  Therefore, we merged this specific aim into 
specific aim 2.3, in which we completed a large scale human observer performance 
experiment.  We increased the number of images viewed in that experiment so that 
each mammographer rated 2200 images from different resolution and noise levels. 
 

 
Task 5:  Utilize the empirical model to examine the effect of dose on the detection 
of microcalcifications and masses and determine the minimum allowable dose 
level for “safe” mammographic imaging.  
 
5.1 Determine the relationship between dose and noise amplitude for the three 

specific digital mammographic systems through published measurements. 
We determined the magnitude of the signal to noise ratio for a given dose by the 
equation: 

2 2(0)Actual IdealSNR DQE SNR= ⋅  (1) 
where SNRIdeal was computed using a program by Boone to generate x-ray 
spectra10 and DQE(0) was determined from published measurements.  This 
signal to noise ratio was mapped to a graylevel variance using the exposure-pixel 
value relationship for the detector. 

 
5.2 Determine the effect of scatter utilizing previously published models. 

We determined the magnitude of scatter by using previously published data by 
Boone.11  Our group measured the magnitude of scatter reduction accomplished 
by the antiscatter grid.  The scatter to primary ratios were then discounted by the 
scatter reduction from the grid.  The effect of scatter was incorporated by 
reducing the contrast of our simulated lesions by the magnitude of the scattered 
radiation. 
 
Our previous annual report described our work on scatter using previously 
published models.  Previously published models generally characterize scatter in 
terms of its magnitude (scatter fraction or scatter to primary ratio).  This 
characterization was appropriate for film-screen systems where scatter primarily 
affected the contrast of subtle lesions.  However, digital systems can overcome 
these contrast effects, but are still subject to scatter’s resolution and noise 
effects.  Therefore, we created a Monte Carlo model of a digital mammographic 
detector in order to understand scatter’s effects.  This model is discussed in more 
detail in Appendix VII.   
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Using the previously developed empirical model to analyze the effect of dose on 
the detectability of masses and microcalcifications. 
We have generated four image sets using the mammographic data obtained in 
1.1.  The first set was obtained at full dose and the next three sets have added 
noise to simulate half, quarter, and eighth dose, respectively.  Two different 
observer models analyzed these image sets, a visual discrimination model and a 
non-prewhitening matched filter with eye filter model.  The results of this work are 
disclosed in Appendix I.  We furthered that work by conducting a large observer 
experiment with five mammographers.  This observer experiment looked at 
lesion detection and discrimination under three different dose levels.  The results 
of that experiment are disclosed in Appendix II. 
 

5.3 The results from the previous step will guide the creation for recommendations 
on the minimum allowable dose for “safe” mammographic imaging. 
As found in Appendix II, observer performance at lesion detection and lesion 
discrimination remained relatively constant under significant dose reduction.  In 
fact, observer performance did not drop by a statistically significant amount even 
when the dose was reduced by half.  This suggests that the dose in 
mammography may be reduced modestly with minimal impact on diagnostic 
performance.12 
 

Task 6: Apply the empirical model to ascertain the effect of a specific image 
processing algorithms, unsharp masking, on lesion detection and optimize its 
utilization.  
 
6.1 Examine the clinical parameters used for unsharp masking. 

Several types of unsharp masking are used in clinical practice.  We implemented 
the most basic type of multiscale processing, consisting of an unsharp masking 
stage and a contrast equalization stage.  The form of this processing was 
determined from previously published methods.13  The images then underwent a 
logarithmic transform and were window and leveled for appropriate clinical 
appearance.  The exact parameters for the entire image processing sequence 
were verified by an experienced breast imaging radiologist, as described in 
Appendix I and IV.  

 
6.2 Fit the resolution and noise properties of the combined image processing and 

detector system using the generalized curve-fitting algorithm. 
The unsharp masking affects the image in the following way: 

( )( , ) ( , ) ( , ) ( , )S O O O BI x y I x y SF I x y I x y G= + ⋅ − ⊗  (2) 
 
This will affect the image frequency spectra as 

( )2 2

2 2

( )( , ) ( , ) ( , ) ( , )

( ) ( ) (1 )

u v
S O O O

f
S O

I u v I u v SF I u v I u v e

MTF f MTF f SF SF e

σ

σ

− +

−

= + ⋅ − ⋅

= ⋅ + − ⋅
, (3) 

where IS refers to the sharpened image, Io corresponds to the original image, SF 
is the sharpness factor, GB is the Gaussian blurring kernel, (x,y) represent the 
spatial position coordinates, (u,v) describe the Cartesian frequency coordinates 
while f refers to the radial frequency coordinate, σ controls the level of blur in the 
Gaussian kernel, and MTF is the modulation transfer function.  The MTF 
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measures the resolution of an image.  The noise is best described by the noise 
power spectra (NPS) and scales as the MTF squared: 

2 2 2( ) (1 ) ( )f
S ONPS f SF SF e NPS fσ−= + − ⋅  (4) 

 
6.3 Input the above into the empirical model in order to determine the ideal 

parameters for unsharp masking which allow for the highest detection levels. 
The results of the human observer experiment, as detailed in Appendix I, suggest 
that the unsharp masking will not greatly affect observer performance as the 
image signal to noise ratio will remain constant over this transform.   

 
Task 7: Employ the model to examine the influence of two specific display 
characteristics, display magnification and display resolution, on lesion detection 
and thus develop guidelines for optimized viewing of digital mammograms.  

 
7.1 Determine the effect of display magnification on resolution and noise of an 

image. 
In the object plane, magnification affects the resolution as: 

( ) ( )MTF u MTF u m′ = ⋅  (5) 
 where u represents spatial frequency in the image plane, MTF corresponds to 

modulation transfer function measured at the detector, MTF’ is the MTF in the 
object plane, and m refers to the geometric magnification. 14, 15  In the object 
plane, magnification affects the noise as: 

 ( ) ( )2
1NPS u NPS u m

m
′ = ⋅  (6) 

where NPS’ refers the NPS in the object plane while NPS represents the NPS in 
the image plane.14, 15 

 
7.2 Determine the resolution and noise for four display devices, three common 

Cathode Ray Tube (CRT) devices and one Liquid Crystal Display (LCD) device. 
Using a high-quality CCD camera, we measured the resolution and noise of two 
CRT displays and three LCD devices.  As LCDs are becoming increasingly 
common in clinical systems, we decided to include more of a focus on LCD 
displays than we proposed in the statement of work.  The results of this work are 
in Appendix VI. 
 

7.3 Fit the resolution and noise properties of the combined display and detector 
system using the generalized curve-fitting algorithm. 
After obtaining the resolution and noise characteristics, we fit each of them with a 
multi-parameter exponential function.  This provided us with a functional form for 
the resolution and noise data. 
 

7.4 Input the above into the empirical model in order to develop guidelines for 
optimized display of mammographic images. 
Instead of an empirical model, we used a human observer experiment to 
examine the impact of different display resolutions on the detection of masses 
and calcifications.  Please refer to Appendices I, IV, and IX. 
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Key Research Accomplishments  
 

• Conducted large observer experiment with five mammographers examining the 
impact of reduced dose on lesion detection, discrimination, and interpretation 
time.   

• Examined the effect of different medical displays on lesion detection, 
discrimination, and interpretation time. 

• Created large image set with noise properties emulating mammograms acquired 
at a reduced dose and emulating resolution of images displayed on different 
commercial medical displays. 

• Acquired a large data set of normal digital mammograms. 

• Developed Monte Carlo model of digital mammographic system to characterize 
the effects of x-ray scatter on resolution and noise. 

• Developed model for radiographic appearance of breast masses and 
calcifications and implemented lesion simulation program. 

• Measured resolution and noise of five medical displays, representing both CRT 
and LCD devices. 

• Implemented observer model for examining image sets, based on a non-
prewhitening matched filter model with eye filter. 

• Measured physical characteristics of clinical prototype mammographic system. 

• Researched image processing techniques and implemented image processing 
program. 
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Reportable Outcomes 
 
Presentations 
R.S. Saunders and E. Samei,” “Effects of Digital Displays,” Southeastern Chapter of the 
American Association of Physicists in Medicine Educational Symposium, Atlanta, GA 
(2007).  (Invited Lecture) 
 
R.S. Saunders, E. Samei, N. Majdi-Nasab, and J.Y. Lo, “Initial Human Subject Results 
for Breast Bi-Plane Correlation Imaging,” SPIE Medical Imaging 2007: Computer Aided 
Diagnosis (2007). 
 
R.S. Saunders and E. Samei, “Who’s afraid of DQE?: How image quality affects clinical 
performance,” Minicourse on Science and Technology for Effective Interpretation of 
Medical Images, Radiological Society of North America Annual Meeting (2006). 
 
R.S. Saunders and E. Samei, "Displaying Your Health: An Overview of Medical Display 
Research," American Display Engineering and Applications Conference, Atlanta, GA 
(2006). (Invited Lecture) 
 
R.S. Saunders and E. Samei, “Does Image Quality Impact Mammographic Accuracy?,” 
AAPM 48th Annual Meeting (2006). 
 
R.S. Saunders and E. Samei, “A Monte Carlo Investigation on the Impact of Scattered 
Radiation on Image Resolution and Noise,” SPIE Medical Imaging 2006: Physics of 
Medical Imaging (2006). 
 
A.S. Chawla, R.S. Saunders, C. Abbey, D.M. Delong, and E. Samei, “Analyzing the 
effect of dose reduction on the detection of mammographic lesions using mathematical 
observer models,” SPIE Medical Imaging 2006: Image Perception, Observer 
Performance, and Technology Assessment (2006). 
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R.S. Saunders, E. Samei, and J. Baker, “Effect of Image Quality on Mammographic 
Accuracy,” Radiology Grand Rounds, Duke University Medical Center, Durham, NC, 
January 2006. (Invited Lecture) 
 
R.S. Saunders, E. Samei, J. Baker, J. Johnson, A. Chawla, and J. Nafziger, “Effect of 
Image Quality Parameters on the Detection of Mammographic Lesions,” Medical Image 
Perception Society Conference XI (2005). 
 
R.S. Saunders and E. Samei, “Impact of Digital Displays on the Detection of Breast 
Lesions,” Era of Hope Conference (2005). 
 
R.S. Saunders, E. Samei, J. Johnson, and J. Baker, “Effect of display resolution on the 
detection of mammographic lesions,” SPIE Medical Imaging 2005: Image Perception, 
Observer Performance, and Technology Assessment (2005). 
 
J.L. Jesneck, R.S. Saunders, E. Samei, J.Q. Xia, and J.Y. Lo, “Detector evaluation of a 
prototype amorphous selenium-based full field digital mammography system,” SPIE 
Medical Imaging 2005: Physics of Medical Imaging (2005). 
R. S. Saunders., E. Samei, and J. Baker, “Simulation of Mammographic Lesions,” 
Radiological Society of North America Annual Meeting (2004). 

R. S. Saunders, A. Farshchi, and E. Samei, “Measurement of Display Resolution for 
Commercial Medical Displays,” Radiological Society of North America Annual Meeting 
(2004). 

R. S. Saunders, E. Samei, J. Y. Lo and J. L. Jesneck, "Physical Characterization of a 
Selenium-based Full Field Digital Mammography Detector," 7th International Workshop 
on Digital Mammography (2004). 

R. S. Saunders, E. Samei, and J. Baker, “Simulation of Breast Lesions,” 7th 
International Workshop on Digital Mammography (2004). 

R. S. Saunders and E. Samei, "Characterization of breast masses for simulation 
purposes," SPIE Medical Imaging 2004: Image Perception, Observer Performance, and 
Technology Assessment (2004). 
 
Refereed Journal Articles 
R.S. Saunders, J.A. Baker, D.M. Delong, J.P. Johnson, and E. Samei, “Does image 
quality matter?: Impact of resolution and noise on mammographic task performance,” 
Med. Phys. (Submitted December 2006). 

E. Samei, R.S. Saunders, J.A. Baker, D.M. Delong, “Digital Mammography: Effects of 
Reduced Radiation Dose on Diagnostic Performance,” Radiology (In Press, 2007). 

R.S. Saunders and E. Samei, "Improving mammographic decision accuracy by 
incorporating observer ratings with interpretation time," Br. J. Radiol. 79, 5117-5122 
(2006). 

R. S. Saunders, E. Samei, J. Baker, D. Delong, M. S. Soo, R. Walsh, E. Pisano, C. M. 
Kuzmiak and D. Pavic, "Comparison of LCD and CRT Displays Based on Efficacy for 
Digital Mammography," Acad Radiol 13, 1317-1326 (2006). 
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R. S. Saunders, E. Samei, J. A. Baker and D. Delong, "Simulation of Mammographic 
Lesions," Acad Radiol 13, 860-870 (2006). 

R.S. Saunders, and E. Samei, “Resolution and Noise Measurements of Selected 
Commercial Medical Displays,” Med. Phys. 33, 308-319 (2005). 

R. S. Saunders, E. Samei, J. Y. Lo, J. Jesneck,  “Physical Characterization of a 
Prototype Selenium-based Full Field Digital Mammography Detector,” Med. Phys. 32, 
588-599 (2005). 

 
Full-Length Conference Proceeding Articles 
R.S. Saunders and E. Samei, “A Monte Carlo Investigation on the Impact of Scattered 
Radiation on Image Resolution and Noise,” Proc. SPIE 6142, 61423A (2006). 
 
R. S. Saunders, E. Samei, J. Johnson and J. Baker, "Effect of display resolution on the 
detection of mammographic lesions," Proc. SPIE 5749, 243-250 (2005). 

R. S. Saunders and E. Samei, "Characterization of breast masses for simulation 
purposes," Proc. SPIE 5372, 242-250 (2004). 
 
R. S. Saunders Jr., E. Samei, and J. Baker, “Simulation of Breast Lesions,”  
Proceedings of 7th International Workshop on Digital Mammography (2004). 
 
R. S. Saunders Jr., E. Samei, J. Y. Lo and J. L. Jesneck, "Physical Characterization of a 
Selenium-based Full Field Digital Mammography Detector," Proceedings of 7th 
International Workshop on Digital Mammography (2004). 
 
Degrees Earned 
Robert Saunders graduated with a doctorate in physics from Duke University in May 
2006.   
 
 
Research Opportunities Received based on Training Supported by this Award 
Dr. Saunders now serves as a post-doctoral fellow in the Duke Advanced Imaging Labs 
due to the support of this pre-doctoral grant and the training he received while 
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Conclusions 
This study sought to understand how different imaging parameters affect clinical 
diagnosis.  It proceeded in two stages.  First, it developed research tools to measure 
imaging systems and also tools to simulate breast anatomy and system performance.  
Using these tools, we measured the physical properties of a clinical mammographic 
detector and several medical display devices.  We also developed a routine that inserts 
simulated masses or calcifications into a normal mammographic background.   Using 
Monte Carlo methods, we produced a new tool to model scattered radiation in digital 
radiographic systems.  Second, we applied these research tools to several clinically 
relevant questions.  We created a large image set with images emulating those 
acquired at reduced dose and those displayed at different medical display resolutions.  
These images were analyzed by computational observer models and by five 
experienced breast imaging radiologists.  The results of these studies addressed two 
questions.  The first question explored the impact of display resolution on the detection 
of breast masses and calcifications.  For this question, we found that different displays 
had little impact on clinical performance; radiologists performed similarly on all displays.  
The second question explored the effect of reduced dose on the detection of breast 
lesions.  For this question, we found that the increased noise from reduced dose did 
impact radiologist performance.  However, even reducing the dose by half did not have 
a statistically significant impact on diagnostic accuracy, suggesting that mammographic 
dose could be reduced modestly with little impact on clinical performance.  Both of 
these questions have immediate impact on clinical care, as they will determine which 
medical displays are appropriate for reading mammograms and whether women may be 
imaged using a lower dose.   
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ABSTRACT 
 
The purpose of this study was to examine the effects of different resolution and noise 

levels on task performance in digital mammography.  This study created an image set 

with images at three different resolution levels, corresponding to three digital display 

devices, and three different noise levels, with noise magnitudes similar to full clinical 

dose, half clinical dose, and quarter clinical dose.  The images were read by five 

experienced breast imaging radiologists.  Human observer results showed increasing 

blur had little effect on overall accuracy and individual diagnostic task performance, but 

increasing noise caused overall accuracy to decrease by a statistically significant 21% 

as the breast dose went to one-quarter of its normal clinical value.  The noise effects 

were most prominent for the tasks of microcalcification detection and mass 

discrimination.  The change in accuracy (Δα) as a function of change in relative 

quantum noise magnitude (Δη), or Δα/Δη, was -6500 for detection of microcalcifications 

and -4200 for discrimination of masses, showing that accuracy at these tasks 

decreased strongly as relative quantum noise increased, while Δα/Δη = 0.88 for 

detection of malignant masses, indicating this task accuracy remained relatively 

constant with increasing relative quantum noise.  As a secondary aim, the image set 

was also analyzed by two observer models to examine whether their performance was 

similar to humans.  Observer models differed from human observers in their sensitivity 

to resolution degradation but were qualitatively similar to human observers in their 

sensitivity to noise.  The primary conclusions of this study suggest that quantum noise 

appears to be the dominant image quality factor in digital mammography, affecting 

radiologist performance much more profoundly than display blur. 



 

Keywords: Image quality, Mammography, Modulation Transfer Function, Noise Power 

Spectrum, Detective Quantum Efficiency, Image Perception, Observer Models 



I. Introduction 

Recent years have seen a rapid expansion in the number of new mammographic 

imaging technologies, including not only new digital x-ray detectors but also new digital 

display devices.  To rank these new technologies, physicists have conducted a number 

of studies evaluating the performance of these systems.  These studies have generally 

considered physical parameters such as the resolution, noise, and signal to noise 

performance of the devices.1-5  While evaluation of physical parameters provides useful 

information about a system, this level of evaluation is but one element in considering 

total system performance.6-8  Physical metrics do not present a complete picture of 

system performance because improved physical performance may not lead to improved 

diagnostic accuracy or, counterintuitively, a degradation of physical performance, such 

as slightly increased blur or smoothing, may sometimes improve diagnostic accuracy.9-

11  In addition, physical performance results are not always clear.  When comparing two 

systems where one has better resolution while the other has better noise properties, 

which system’s images will be more useful to a radiologist?   

 

As physical metrics present an incomplete picture of system performance, final 

assessment of a new technology depends on measurements of diagnostic accuracy to 

learn whether the system helps clinicians discover disease, as this is the main purpose 

of a screening mammography system.6-8  Most studies avoid measuring diagnostic 

performance because the gold standard, human observer studies, consume substantial 

resources and time compared to physical measurements.  One alternative to human 

observer studies has been using observer models.  Observer models are able to 



analyze large numbers of images quickly and cheaply compared to human observer 

experiments.  It remains unknown whether these observer models accurately predict 

human performance and therefore could replace time-consuming human observer 

performance experiments. 

 

The primary purpose of this work was to establish the connection between physical 

performance metrics, which are straight-forward to measure, and diagnostic accuracy, 

which is the purpose of an imaging system.  This work specifically examined the 

diagnostic accuracy of experienced breast imaging radiologists at several 

mammographic tasks, including the detection and classification of breast lesions.  The 

accuracy of the breast imaging radiologists was measured for several resolution and 

noise settings in order to learn how accuracy changed as a function of physical image 

quality.  While the primary focus of this study focused on human observer performance, 

a secondary aim of this paper was to explore whether computational observer models 

replicated the performance of human observers and could therefore replace human 

observers in system evaluation.   

 

II. Methods and Materials 
 
The overall methodology is outlined in figure 1.  In summary, a mammographic data set 

with images at three different resolution levels and three different noise levels was 

analyzed by human observers.  The results were examined to explore the relative 

impact of different resolution and noise levels on performance.  Observer models were 



applied to the same image database; their results were compared to the human results 

to understand how well the observer models track human performance. 

 

 
 

Figure 1.  Overview of study methods. 
 

 
A. Database of Normal Mammograms 
 
With permission from the Institutional Review Board (IRB), an image database was 

obtained consisting of 984 normal mammograms acquired on a cesium-iodide based 

indirect flat-panel detector (GE Senographe 2000D, GE Medical Systems, Waukesha, 

Wisconsin).12, 13  From this database, 300 mammograms were selected with the 

following properties: craniocaudal view, molybdenum anode, and molybdenum or 

rhodium filtration.  The mammograms were acquired with a mean beam energy of 27.6 

kVp (σ = 1.42 kVp) and an average compressed breast thickness of 5.13 cm (σ = 1.03 



cm).  All mammograms were obtained with only gain and dead pixel correction but no 

additional post-processing by the manufacturer. 

 
B. Lesion Simulation 

To investigate lesion detection and discrimination, simulated mammographic lesions 

were inserted into the center of normal mammographic regions using a validated lesion 

simulation routine, the details of which have been previously disclosed.14-16  This routine 

relied on measurements from real masses and microcalcifications to guide its 

simulation.  The routine simulated three types of lesions: benign masses, malignant 

masses, and distributions of microcalcification.  The lesion contrast was determined 

using xSpect software,17 which modeled the attenuation through a unit thickness of 

mass or microcalcification accounting for beam energy, tube filtration, breast thickness, 

and the energy acceptance of the detector.  The lesion contrasts were further reduced 

by the expected scatter fraction for the mammograms.18  The simulated lesions were 

scaled by the appropriate contrast and then added to the normal mammogram in a 

logarithmic manner to maintain the desired contrast independent of the breast 

attenuation.  This process created four categories of images: mammograms with a 

benign mass, mammograms with a malignant mass, mammograms with a 

microcalcification distribution, and mammograms with no lesion.  There were 150 

mammograms in each category.  Figure 2 shows example mammographic regions with 

simulated lesions. 

 



 

Figure 2. Simulated lesion examples.  This includes a malignant mass (left), benign 
mass (center), and a subtle microcalcification distribution (right). 

 

Pilot studies using observer models showed little change in performance between 

different resolution and noise levels for the detection of benign and malignant masses 

but measurable effects for the discrimination of masses and the detection of 

microcalcifications.  Therefore, the mammographic backgrounds for the latter two tasks 

were paired to increase the statistical power for those tasks.  This led to one group of 

mammograms generating both microcalcification images and normal images (the 

microcalcification detection set) and another class of mammograms generating both 

benign mass images and malignant mass images (the mass discrimination set).  Power 

could have been gained by using the same mammographic backgrounds for all four 

image categories, but this was not done in order to reduce memory effects in the human 

observer, which can be a source of bias. 

 

C. Modification of Quantum Noise in Mammograms 

Three levels of quantum noise were employed for this study, as reflected in figure 3, 

with magnitudes representative of the amount of quantum noise at normal clinical dose 

(Noise1), half of normal dose (Noise2), and one quarter of normal dose (Noise3).  The 



normalized noise power spectrum (NNPS) corresponded to the NNPS of the 

commercial full-field digital mammography (FFDM) system on which the mammograms 

were acquired.12, 13   

 

 
 

Figure 3(a).  Normalized noise power spectrum of the detector noise for an average 
mammogram in our database.  The relative inherent quantum noise magnitude, or the 
integral of the NNPS, was 1.14·10-5, 2.29·10-5, and 4.61·10-5 for Noise1, Noise2, and 

Noise3, respectively. 
 

           
Figure 3(b).  Example mammographic regions at each of the noise levels with Noise1 

on the left, Noise2 in the center, and Noise3 on the right. 
 

The noise properties of the images were modified by a noise modification routine, the 

details of which have been disclosed in a prior publication.19  The noise modification 



routine calculated the signal to noise ratio (SNR) in a mammogram based on the 

definition of the detective quantum efficiency (DQE) as 

2

2(0) ,Actual

Ideal

SNRDQE
SNR

=  (1) 

where DQE(0) equals the measured DQE at zero spatial frequency, SNRActual 

represents the actual SNR of the mammogram, and SNRIdeal corresponds to the 

modeled ideal signal to noise ratio.  Recognizing that SNRIdeal can be decomposed into 

q, the modeled ideal SNR2 per unit exposure, multiplied by ξ, the measured exposure, 

equation (1) can be rewritten as 

2 2(0) (0) .Actual IdealSNR DQE SNR DQE q ξ= ⋅ = ⋅ ⋅  (2) 

Converting the actual SNR into pixel grayscale units, we obtain the following 

(0) ,
x DQE q ξ
σ μ

⋅ ⋅
=  (3) 

Where ‹x› corresponds to the mean signal, σ refers to the standard deviation of the 

noise, ‹x›/σ corresponds to the signal to noise ratio in detector grayscale units and μ 

represents the slope of the measured relationship between exposure and pixel 

grayscale units.  The routine kept the signal level constant and then modified the noise 

level to produce a mammogram with a signal to noise ratio consistent with a reduced 

exposure condition.   

 
 
D. Image Processing 
 
Manufacturers often apply complex image processing algorithms to improve various 

aspects of image appearance.  To control for this process, identical image processing 

was applied to all mammograms.  First, a consistent two-stage image processing 



algorithm was applied to accentuate fine detail while equalizing the contrast between 

the breast and background areas.20, 21  Second, the grayscale histogram of each 

mammogram was analyzed to identify the gray level distribution of breast and 

background.  From these results, a window and level was chosen that best balanced 

the need for contrast at the breast center with visualization of the breast skin line.  The 

window and level function was applied to the mammograms using a sigmoid curve to 

provide a smooth function over the entire grayscale range.  The appropriateness of the 

algorithm parameters and window and level settings were validated by visual analysis of 

full mammograms by an experienced radiologist.   

 
 
E. Modifying Image Resolution 
 
In this study, the mammograms were evaluated at three resolution levels, illustrated in 

figure 4.  These resolution levels corresponded to the resolution of the entire imaging 

chain, including the resolution of both the x-ray detector and the digital display.  The 

Modulation Transfer Function (MTF) of the commercial FFDM system on which the 

mammograms were acquired had been measured by previous investigators.12, 13  The 

total resolution combined this detector resolution with the measured resolution of three 

commercial medical displays: a medical LCD device (Resolution1), a medical CRT 

display with standard resolution (Resolution2), and the same CRT but with degraded 

resolution corresponding to monitor aging (Resolution3).2  The display and detector 

MTFs were combined assuming the image was displayed with one image pixel per 

display pixel.  The display properties are further described in table I. 



 
 

Figure 4(a).  Three resolution levels evaluated in this study.  These correspond to the 
resolution of an indirect digital detector convolved with three different display devices.  

The geometric sharpness, or integral of the MTF2, was 2.14, 0.92, and 0.90 for 
Resolution1, Resolution2, and Resolution3, respectively. 

 

           
Figure 4(b).  Example mammographic regions at each of the three resolution levels 
with Resolution1 on the left, Resolution2 in the center, and Resolution3 on the right. 

 



Table I:  Overview of display properties.  The CRT display was further modified by 
defocusing its electron gun in order to produce both the standard resolution and 
degraded resolution CRT evaluated in this experiment.  The first six rows reflect 
manufacturer specifications, while the luminance values in the last two rows were 
measured in our laboratories.2, 22 

 CRT LCD 

Display Name Barco MGD 521 National Display Systems Nova V 

Display Card Barco MP1H (10-bit) RealVision MD5mp (10-bit) 

Additional Properties p45 phosphor --- 

Pixel Pitch (mm) 0.148 0.165 

Matrix Size 2048 x 2560 2048 x 2560 

Active Display Area 304 mm x 380 mm 338 mm x 422 mm 

Lmin (Cd/m2) 0.52 0.52 

Lmax (Cd/m2) 308 371 
 
 

Pilot experiments using observer models guided the allocation of different numbers of 

images to various resolution and noise subgroups.  These pilot experiments showed the 

smallest effects appeared to occur between different resolution levels.  The different 

resolution categories therefore included additional images to increase the statistical 

power for finding differences between those categories.  Figure 5 illustrates the 

distribution of images analyzed by observer models and human observers. 

 



 

Figure 5. Distribution of images in each resolution and noise category.  The category of 
(Resolution3, Noise2) was not evaluated in this experiment to reduce the duration of the 

human observer experiment. 
 

The resolution levels were achieved differently for the observer model experiment and 

human observer experiments.  For human observer experiments, the image resolution 

was altered by displaying the mammograms on three different medical displays with the 

same desired resolution characteristics.  The blur due to the inherent display resolution 

altered the mammogram resolution to that outlined in figure 4.  For the observer model 

experiments, the image resolution was altered by an established resolution modification 

routine, the details of which have been disclosed in a prior publication.19   

 

F. Human Observer Performance Experiment 

The 2200 images were reviewed by five experienced breast imaging radiologists.  The 

radiologists, from two different academic medical centers, had an average of 11.2 years 

as a radiology attending, 9.8 years as a mammography attending, and an average 

reading volume of 160 cases/week.  The experiment began with a training set of 100 

images, in which feedback was given after each image, in order to familiarize the 



radiologist with the lesion types and the graphical user interface (GUI).  The radiologists 

proceeded to the reading set and reviewed 2200 images on a custom GUI which was 

developed to imitate clinical tasks.  The radiologist would view a mammographic region 

(5.12 cm x 5.12 cm) and rate it into one of four categories: microcalcifications present in 

the center of the region, a benign mass present in the center of the region, a malignant 

mass present in the center of the region, or no lesion present.  This custom protocol 

was chosen instead of receiver operating characteristic (ROC) analysis as this protocol 

increased throughput dramatically, allowing the radiologists to view 2200 images in 

2.5—3 hours.  The ability to rate this large number of images improved our statistical 

power and therefore the ability to observe small differences in accuracy between 

different resolution and noise levels. 

 

To minimize confounding effects, the experiment had several constraints.  To maximize 

image contrast, all images were viewed in a room with low ambient lighting.  To 

minimize an image’s rating from being biased by adjacent images, images were shown 

one at a time with no ability to return to a previously rated image.  To accurately reflect 

display blur, all images were displayed with one display pixel representing one image 

pixel.  To minimize off-axis contrast degradation, the radiologists were asked to view 

each image straight ahead and centered.23  To create consistent image appearance, 

observers could not window and level the images.  To minimize various biasing effects, 

the display order, the image order, and the image orientation were randomized.  To 

minimize fatigue, radiologists were given a five minute break between sessions.  

 



The human observer data were first analyzed for overall classification accuracy and 

lesion detection accuracy.  The overall classification accuracy metric represented the 

percentage of mammograms correctly rated by an observer.  Its associated variance 

was calculated with a bootstrap analysis, using 10,000 bootstrap samples.24  Overall 

lesion detection accuracy was computed as the average of sensitivity and specificity in 

detecting any lesion.  For overall lesion detection accuracy, a true positive was defined 

as detecting any lesion within an abnormal mammogram, even if the observer 

misclassifies the lesion as benign or malignant.  Its variance was similarly calculated 

with bootstrap analysis.  This detection accuracy metric functioned similarly to the area 

under an ROC curve as it balanced sensitivity and specificity.  Mathematically, the 

overall lesion detection accuracy can be shown to be the three point approximation to 

the area under an ROC curve. Statistical significance was estimated using a paired t-

test to find a p value.25 

 

The data were further analyzed for performance for several clinical tasks: the detection 

of microcalcifications, the detection of benign masses, the detection of malignant 

masses, and the discrimination between benign and malignant masses.  For each task, 

the task accuracy examined the ratings for the two related categories.  For instance, the 

two categories analyzed for microcalcification detection were microcalcification images 

and normal images that were either rated as containing microcalcifications or no lesion.  

Follow-up experiments confirmed that this exclusion did not bias the task results.26  

Task accuracy was defined as the average of sensitivity and specificity.  As before, this 

accuracy metric was chosen because it approximated the area under an ROC curve.  



The task variance was calculated using bootstrap analysis.  Task statistical significance 

was estimated using a paired t-test to find a p value.25 

 

G. Computational Observer Models 
 
1.  Visual Discrimination Model (VDM) 
 
The Sarnoff JNDMetrix27 Visual Discrimination Model (VDM) was used to predict trends 

in human performance for four clinical tasks: discrimination of benign and malignant 

masses and the detection of microcalcifications, benign masses, and malignant 

masses.  This model has been used previously to estimate the detection of 

mammographic lesions, for example in understanding the effects of display factors and 

image processing on the detection of mammographic lesions.28-31  To estimate the 

detectability of breast lesions, the VDM compared a mammogram containing a lesion to 

the same mammogram without the lesion and computed a map of just-noticeable 

difference (JND) values.32-34  This map was summarized into a scalar value using the 

Q4 Minkowski normalization technique.23, 35  We evaluated how this average value 

changed as a function of resolution and noise properties. 

 
 
2. Non-Prewhitening Matched Filter with Eye Filter (NPWE) Model 
 
A non-prewhitening matched filter with eye filter (NPWE) analyzed the images to 

estimate performance on the same four clinical tasks.  The NPWE has been used in 

several previous investigations to estimate accuracy at mammographic tasks36-38 and 

other perception tasks.39-43  In contrast to a VDM, the NPWE operates on a single 

image to determine whether it contains a specific lesion.   



 

In summary, the NPWE computed its decision variable by correlating an input image 

with an observer template.  The observer template was formed by filtering the simulated 

breast lesions by the spatial frequency response of the human visual system E(f) using 

parameters for the eye filter determined from previous publications.44  The observer 

templates were scaled to unit standard deviation in order to produce consistent decision 

variables for each template.  The model computed its decision variables in the spatial 

domain and therefore did not assume stationarity of the backgrounds.45 

 

This observer model calculated detection and discrimination using a signal-known-

statistically (SKS) paradigm.46  In this scenario, the location of a lesion within an image 

is known, but the characteristics of the lesion are only known in a statistical sense.  The 

NPWE model implemented the SKS paradigm by using a bank of lesion templates, 

which included one template for each simulated lesion template, to represent the lesion 

characteristics.  The NPWE applied the entire filter bank to each image and chose the 

maximum decision variable.  The decision variables were analyzed using Receiver 

Operating Characteristic (ROC) analysis47, 48 by computing the non-parametric ROC 

curve and calculating the area under the non-parametric ROC curve using a trapezoidal 

numerical integration. 

 

III. Results 

A. Human Observer Results 



Figure 6(a) illustrates the overall classification accuracy of the average human observer 

at different resolution and noise levels.  Overall accuracy differed little between different 

resolution levels for each noise level.  However, overall accuracy dropped substantially 

as noise increased from Noise1 to Noise2 to Noise3.  Figure 6(b) shows lesion detection 

accuracy at different resolution and noise levels, which shows similar trends to overall 

classification accuracy.  Figure 7 lists human performance at the four clinical tasks.  

Human observers appeared little affected by resolution for each of four specific clinical 

tasks.  However, human observers did experience accuracy drops for the detection of 

microcalcifications and the discrimination of masses with increased noise.  Increased 

noise led to a small drop in accuracy for detection of the benign masses at Noise3, but 

appeared to have a minimal impact on the detection of malignant masses. 

 

 
Figure 6(a).  Overall classification accuracy for average human observer at different 

resolution and noise levels. 
 



 
Figure 6(b).  Lesion detection accuracy for average human observer at different 

resolution and noise levels. 
 



 
 

Figure 7.  Task performance for average human observer at different resolution and 
noise levels. 

 



Figure 8 plots overall classification accuracy quantitatively, showing how overall 

accuracy varies as a function of geometric sharpness, relative quantum noise 

magnitude, and relative signal to noise ratio.  Figure 8(a) quantitatively shows that 

overall accuracy remained constant with geometric sharpness at each noise level.  

Figure 8(b) quantitatively shows how overall accuracy decreased with increasing 

relative quantum noise magnitude.  To determine the change in each task accuracy (α) 

as a function of relative quantum noise magnitude (η), the task accuracies were fit as a 

function of the relative quantum noise magnitude to find Δα/Δη, the slope of the fit line.  

For the tasks, Δα/Δη was -6500 for detection of microcalcifications, -4200 for 

discrimination of masses, -3100 for detection of benign masses, and 0.88 for detection 

of malignant masses.  This confirmed that microcalcification detection and mass 

discrimination had a strong dependence on quantum noise magnitude, while benign 

mass detection had a weaker dependence and malignant mass detection had minimal 

relationship to quantum noise magnitude.  Figure 8(c) illustrates overall accuracy as a 

function of inherent signal to noise ratio, confirming that overall accuracy increased as 

the inherent SNR of the mammogram increased. 

 
 



 

 



 
 

Figure 8.  Overall accuracy as a function of geometric sharpness (a), relative inherent 
quantum noise magnitude (b), and inherent signal to noise ratio (c). 

 
B. Observer Model Results 

1. Visual Discrimination Model Results 

Figure 9(a) illustrates the VDM estimates of mammographic task performance at 

different resolution levels.  Unlike human observers, the VDM shows a drop in 

performance for all tasks with decreasing geometric sharpness.  Figure 9(b) shows the 

VDM estimates of mammographic task performance at different noise levels.  Similar to 

human observers, the VDM showed little change in performance for detection of 

masses with increasing noise, but performance for microcalcification detection and 

mass discrimination decreased with increasing quantum noise.  This decrease was not 

by statistically significant, except for mass discrimination between Noise1 and Noise3 

conditions.  For all resolution and noise levels, the VDM performed more poorly at 

microcalcification detection than any other task. 



 

  
Figure 9(a).  Effect of resolution on task performance using VDM observer.   

 
 

 
Figure 9(b).  Effect of noise on task performance using VDM observer.   

 

2. NPWE Results 

Figure 10(a) illustrates the NPWE estimates of mammographic task performance at 

different resolution levels.  Similar to human observers, accuracy remained relatively 



constant with decreasing geometric sharpness.  Figure 10(b) shows the NPWE 

estimates of mammographic task performance at different noise levels.  Like human 

observers, performance at mass detection remained similar with increasing noise but, 

unlike human observers, performance at mass discrimination stayed constant with 

increasing noise.  Analogous to humans, microcalcification detection did decrease 

slightly with increasing noise.  Over all resolution and noise levels, NPWE performance 

at microcalcification detection was very low, staying near chance levels of 0.5. 

 

 

Figure 10(a).  Effect of resolution on task performance using NPWE model 

 



 

Figure 10(b).  Effect of noise on task performance using NPWE model 

 
 

IV. Discussion 
 
This work examined mammographic task performance for a number of resolution and 

noise levels in order to understand how these physical parameters influence the 

diagnostic utility of images.  Human performance was largely unaffected by decreasing 

resolution but decreased at higher noise levels.  Specifically, noise had the greatest 

effect on human observer performance at microcalcification detection and mass 

discrimination.  In contrast, resolution affected observer model performance strongly 

while noise had a more modest effect, suggesting that observer models do not yet fully 

emulate human performance.  

 

Our results showed the importance of noise performance, with resolution playing a more 

modest role.  This confirms earlier work on the detection of simple signals at different 



resolutions.  Gagne, et al used observer models with simple signals and basic 

backgrounds to study lesion detectability at different resolutions.  They found that 

increased blur could even improve lesion detection within certain ranges.9, 49  Bacher, et 

al demonstrated similar results with contrast detail experiments with a CDMAM 3.4 

phantom.  They found similar contrast detail performance for a 5 mega-pixel standard 

LCD and a CRT.50  Our work also agrees with previous work on detection at different 

noise or dose levels.  Gagne, et al discovered that microcalcification detection 

decreases at lower doses with roughly a square root dependence on dose.51  Figure 11 

illustrates our microcalcification detection data fit by a square root function, showing that 

our data roughly follows a square root trend.  Roehrig, et al examined two early digital 

mammography systems through a contrast-detail study and found that a system with 

better noise performance provided a better detection threshold even if it offered lower 

resolution.52   

 

 

Figure 11. Microcalcification detection accuracy as a function of dose.  The solid line 
illustrates the data fit by a square root function.  

 
 

Observer model performance did not fully simulate human performance.  First, observer 

model results showed drops in detection and discrimination with increased display blur, 



while human observers did not.  Computational observers could be more sensitive to 

display blur than human observers and therefore further work must be conducted to 

optimize observer models.  This difference may also be explained by imperfect 

simulation of displays, as this study only simulated display resolution and not their 

noise.  However, while the total display noise differs between an LCD and CRT, the 

amount of perceived display noise should be similar.2  Second, the NPWE model had 

difficulty detecting microcalcifications.  This deficiency in the NPWE observer has also 

been noted in a previous study.53  These points suggest that further work is still needed 

in optimizing observer models to fully replicate human performance.  

 

While quantum noise and display resolution were plotted as orthogonal variables in 

figure 5, they are not truly independent.  This dependence arises because quantum 

noise is added before the display blurring step.  Display blurring reduces the quantum 

noise magnitude and its frequency spectra.  However, display blurring is not the only 

way display devices degrade image quality.  LCDs possess substantial structured noise 

due to their pixel structure while CRT devices have luminance variations due to 

phosphor non-uniformities.  This display noise also impacts the total amount of system 

noise that impedes lesion detection.   However, even given these complications, 

observer performance for each resolution setting remains remarkably similar for each 

dose setting. 

 

V. Conclusions 



This study thoroughly examined the effects of physical measures of image quality on 

diagnostic accuracy in mammography.  One secondary finding of the study was that 

observer models differed from human observers in their sensitivity to resolution 

degradation but were qualitatively similar to human observers in their sensitivity to 

noise.  This study found that decreases in resolution by display devices had little impact 

on human diagnostic performance.  However, substantial increases in quantum noise 

did impede fine-detail tasks, such as the detection of microcalcifications and 

discrimination of benign and malignant masses.  Furthermore, resolution appeared to 

have little effect at each noise level, suggesting that for this range of resolution and 

noise parameters, quantum noise may be the dominant image quality factor impeding 

diagnostic performance.   
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Digital Mammography: Impact of Dose Reduction on Diagnostic Performance 
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Advances in Knowledge: 

Decreasing dose in digital mammography by as much as one-half has minimal effect on 

the detection of malignant masses but a notable impact on the detection of 

microcalcifications, the discrimination between benign and malignant masses, and the 

interpretation time.   
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ABSTRACT 

Purpose 

To experimentally determine the relationship between radiation dose and accuracy in 

the detection and discrimination of simulated lesions in digital mammography, using the 

known simulated lesions as the reference standard.   

Materials and Methods 

Our HIPAA–compliant study had IRB approval with a waiver of informed consent. Three 

hundred normal craniocaudal (CC) images were selected from an existing database of 

digital mammograms. Simulated mammographic lesions mimicking benign and 

malignant masses and clusters of microcalcifications (3.3-7.4 cm in size) were then 

superimposed on the images. The images were rendered without and with added 

radiographic noise simulating the effects of reduced dose by one half and by one 

quarter of the clinical dose. The images were read by five experienced breast imaging 

radiologists. The results were analyzed to examine the impact of reduced dose on the 

overall interpretation accuracy, the detection of microcalcifications, the detection of 

masses, the discrimination between benign and malignant masses, and the 

interpretation time. 

Results 

The overall accuracy dropped from 0.83, to 0.78, to 0.62 for the full, half, and quarter 

dose levels, respectively. The drop associated with the full-to-quarter transition was 

statistically significant (p < 0.01), primarily due to an effect on the detection of 

microcalcifications (p < 0.01) and the discrimination of masses (p < 0.05). That level of 
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dose reduction did not statistically affect the detection of malignant masses (p > 0.5). 

However, that increased the mean interpretation time per image by 28% (p < 0.0001). 

Conclusions 

The findings suggest that a reduction of dose in digital mammography has a 

measurable but modest impact on diagnostic accuracy. The small magnitude of impact 

in response to the drastic reduction of dose suggests potential for modest dose 

reductions in digital mammography. 

 

 

 

Keywords: Dose, Mammography, Breast neoplasm  
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Digital mammography differs from screen-film mammography in important ways (1-4). 

Foremost, digital mammography captures the image via a digital sensor (5). While in 

conventional mammography, the analog film serves as both the detector and the display 

medium, the use of a digital sensor enables a dissociation between the detection and 

display functions. An important consequence of this dissociation is the independence of 

display contrast from subject contrast so that that the quality of a digital mammogram is 

not limited by contrast, which can be manipulated post-acquisition, but rather by noise 

dictated by the number of photons used to form the image. 

 The shift from contrast- to noise-limited imaging has a fundamental implication on 

radiation dose for digital mammography. In clinical implementation of digital 

mammography, it is imperative to use the appropriate level of radiation (not more and 

not less) for the diagnostic task at hand. More radiation, on one hand, will lower the 

level of noise but may impart radiation doses to the patient higher than necessary (6). 

Less radiation, on the other hand, will lower the signal to noise ratio of the image, which 

in turn negatively impacts the presentation of the information and thus potentially the 

diagnosis. The proper level of radiation dose for a mammogram should be dictated by 

the amount of radiation required to achieve an adequate level of signal-to-noise ratio to 

present image details required to render an accurate diagnosis.   

 In the current clinical implementations of digital mammography, the level of 

radiation dose has generally been set to the dose used by equivalent analog systems. 

This may partly be due to following the prior convention with analog systems, as well as 

the fact that the relationship between noise and diagnostic accuracy has not yet been 

well established for digital mammography. The use of “analog doses” has taken place 
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despite the fact that the digital systems are not limited by contrast-limited constraints of 

analog systems, and that the improved detective quantum efficiency (DQE) of most 

digital systems offers a potential for reduced dose (5, 7). Thus, the purpose of our study 

was to experimentally determine the relationship between radiation dose and accuracy 

in the detection and discrimination of simulated lesions in digital mammography, using 

the known simulated lesions as the reference standard.  

Materials and Methods 

 Our HIPAA-compliant study had IRB approval with a waiver of informed consent. 

Image Selection  

 Three hundred normal craniocaudal (CC) images were randomly selected from 

an existing database of digital mammograms. All images were originally acquired using 

a commercial indirect flat-panel mammography system (GE Senographe, GE Medical 

Solutions, Waukesha, WI) using kVps ranging between 25 and 30 (27.6 kVp, average), 

a molybdenum anode, and molybdenum or rhodium filtrations. The selected images, 

considered normal according to the radiologists’ reading of the exams in the routine 

clinical operation, reflected compressed breast thickness ranging from 2.7 to 7.4 cm 

(5.1 cm, average) and the full range of breast densities from fatty to extremely dense. 

As a requirement of subsequent steps of the study, the images were utilized in their 

native raw format without additional post-processing, except for gain and bad pixel 

corrections implemented by the system.   

Simulation of Mammographic Lesions, the Reference Standard 

 Simulated mammographic lesions, used as the reference standard, were inserted 

in the selected images using a lesion simulation program (8). Three common categories 
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of lesions were simulated: benign-appearing masses (modeled after oval circumscribed 

and oval obscured lesions), malignant-appearing masses (modeled after irregular ill-

defined and irregular spiculated lesions), and microcalcifications (modeled after 

clustered pleomorphic and fine linear branching lesions) (9). All simulated lesions had 

contrast, contrast profile, shape, border characteristics, and distributions similar to those 

of the lesion type being simulated. A prior study confirms that radiologists cannot 

differentiate these simulated lesions from actual lesions (8).   

 The original set of 300 images was divided into two groups of 150. One group 

was used to generate both 150 images with benign masses and 150 with malignant 

masses; the other group was similarly formed into both 150 images with 

microcalcifications and 150 without lesions. This scheme was designed to enable 

matching backgrounds for mass discrimination and microcalcification detection tasks to 

improve the associated statistics, while minimizing the number of times a particular 

background is viewed by the observers. 

 The sizes for the simulated lesions were determined based on pilot experiments 

aiming to target the detection accuracy in the neighborhood of 80% for our experimental 

condition. The simulated masses ranged in diameter between 3.3 and 4.1 mm (3.7 mm, 

average). Individual calcifications had mean major and minor axis lengths of 0.37 and 

0.25 mm, respectively. The pleomorphic lesions ranged in diameter between 4.0 and 

7.0 mm. Distributions for fine linear branching lesions had lines of microcalcifications 

with lengths between 4.0 and 9.0 mm. The overall contrast magnitudes of the simulated 

lesions were determined based on the characteristics of image formation and of real 

lesions (10), and the level of scattered radiation in each mammogram (11). The 
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simulated lesions were added to the mammographic images in a logarithmic scale to 

result in contrast magnitudes that would be independent of the image background at the 

location of the insertion (12).   

Noise Addition 

 As current flat-panel mammography systems are quantum noise-limited (13, 14), 

the main consequence of a dose reduction is a proportionate increase in the level of 

quantum noise within the image. Therefore, to create images with a noise appearance 

similar to that caused by a reduction in radiation dose, a noise modification routine was 

used to add radiographic noise to the images. To do so, each group of 150 lesion 

groups described above was divided into three subgroups corresponding to full-dose 

(without any added noise), half-dose, and quarter-dose of the original (clinical) dose 

conditions, respectively.  

 The noise addition routine, previously described in detail (15), was capable of 

adding noise according to an a priori magnitude and texture (16-19). The desired 

radiographic noise magnitude was ascertained with the aid of the measured relationship 

between noise variance and exposure for the imaging system used (Appendix I). At 

each dose level, the noise magnitude was adjusted based on the pixel value to properly 

account for the impact of breast attenuation on noise (15). The noise texture was 

similarly based on the measured noise power spectrum (NPS) for the mammographic 

system (13-15). 

Image Post-processing 

 The lesion and noise simulation processes described above were performed on 

the images in the raw format in order to properly emulate the subject contrast of real 
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mammography lesions and noise properties of low-dose mammograms. However, raw 

format images were not suitable for interpretation by radiologists. Since GE’s proprietary 

algorithms could not be applied in the post-processing environment, two generic post-

processing steps were applied to the images to make the image appearance 

representative of those in clinical practice. In the first step, unsharp masking and 

contrast equalization techniques (20) were used to enhance the visualization of smaller 

structures and to equalize broad signal variations between the center and borders of the 

breast. The associated parameters for this operation were determined subjectively by 

visual analysis of processed mammograms (J.A.B., with seven years’ experience as a 

mammography attending, 5,000 cases per year). Identical processing was then applied 

to all images.   

 The second processing step established a window and level setting appropriate 

for optimum viewing of each image. The window and level parameters were determined 

from histogram analysis of full mammograms, with the goal of clinically-representative 

contrast levels in the central breast area while maintaining adequate contrast along the 

breast boundary. A sigmoid function was then fitted to all window and level functions to 

provide a smooth transition at the extremes of the grayscale range. A breast imaging 

radiologist (J.A.B., with seven years’ experience interpreting mammograms), who did 

not participate in the subsequent observer study, reviewed all images after window and 

level processing to ensure the image appearance matched what is common in clinical 

practice.   

Observer Performance Experiment 
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 An observer performance experiment was conducted to assess the impact of 

reduced dose on lesion detection and discrimination. A 5.12 cm x 5.12 cm (512 pixel x 

512 pixel) region, centered at the location of the lesion, was extracted from each image 

(Figure 1). Using a location-known-exactly experimental paradigm, all images were 

scored by five breast imaging radiologists with 3-17 (9.8, average) years’ experience 

reading 4000-15000 (8000, average) screening mammograms per year. A custom 

graphic user interface (GUI) allowed the observers to indicate whether an image 

appeared to contain a benign mass, a malignant mass, a microcalcification cluster, or 

no lesion. Observers chose only one answer for each image, and a rating scale was not 

used. The interface encouraged observers to indicate their choices through the 

keyboard, substantially shortening the time required for image interpretation. In addition, 

a modified version of GUI was used for a supplemental experiment in which the 

observers were only able to score images in terms of a specific diagnostic task (e.g., 

whether a microcalcification was present or not). 

 All images were viewed on a 5 mega-pixel liquid crystal display (Nova V, National 

Display Systems) equipped with a 10-bit display controller (RealVision MD5mp). The 

device was calibrated to the DICOM grayscale standard display function (21) within 

0.52-371 cd/m2 luminance range (22). All readings were performed in our display 

laboratory with a controlled low ambient lighting condition. 

 Before the actual readings, each observer read a different set of 100 images with 

immediate feedback, to make him/her familiar with the rating interface and appearance 

of the lesions. Each observer then scored a fixed number of images in each of two 

sessions, with five-minute breaks between sub-sessions to reduce observer fatigue. 
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Viewing sessions were 20 to 30 minutes. Two of the observers (eleven and six years’ 

experience, respectively) did an additional repeat read of the images on the modified 

GUI with reduced scoring functionality, which provided scoring options for only the task 

at hand, to provide necessary data used to assess the magnitude of potential bias in our 

categorical scoring scheme.  

Images of different dose levels were displayed in a random order and in one of 

six random orientations (4 orthogonal rotations with horizontal/vertical flips) to minimize 

reading order and memory effects. 

Statistical Analysis 

 Observer results were analyzed for the effects of varying dose/noise levels on 

overall accuracy. Variances were estimated by means of the bootstrap technique 

applied over the mammographic images and t-tests were used to compute the statistical 

significance of estimated differences, using a Bonferroni correction to preserve type I 

error (23, 24). The outcome analyzed was the overall accuracy across all the diagnostic 

tasks as represented by two-dimensional contingency tables. Overall accuracy was 

computed as the percentage of images correctly rated by each observer and a 

combined accuracy statistic was computed as an average over the observers.   

 While overall accuracy analysis combined all tasks into one figure, the data 

analysis further examined the statistical impact of reduced dose on the four specific 

clinical tasks, i.e., the detection of microcalcifications, the detection of benign masses, 

the detection of malignant masses, and the discrimination between benign and 

malignant masses. For each task, a task-specific metric of accuracy was computed as 

the average of sensitivity and specificity (Figure 2). This metric is approximately equal to 
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the area under the bi-normal ROC curve, Az (25). The task performances were 

averaged across observers and these results were compared between different dose 

levels using a t-test for statistical significance with Bonferroni correction (23). To assess 

the presence of any potential bias associated with our scoring method, the scores from 

the repeat single-task study were used to adjust the multiple-task data. The standard 

and adjusted performance on microcalcification detection and mass discrimination were 

compared to test for any potential bias.  

 The data analysis included the reading time associated with each dose subgroup 

of images for each observer, and the average across observers. Standard errors were 

calculated using bootstrap analyses. As reduced signal to noise ratio might have a 

detrimental effect on observer confidence which might be reflected in terms of reading 

time, the data were also analyzed to determine whether the reduced dose images 

required a longer time for interpretation using survival curves and Proportional Hazard 

analysis (26, 27).  

 A p value of less than .05 was considered to indicate a statistically significant 

difference. All statistical analyses were performed with Matlab Version 7, Release 14 

(The Mathworks, Inc., Natick, MA) and JMP 6 (SAS, Cary, NC). 

Results 

Overall Accuracy 

 There was a reduction in overall accuracy with reduced radiation dose. While 

accuracies of individual observers varied, they all exhibited similar trends with reduced 

dose (Figures 3, 4). The reductions were statistically significant for the full-to-quarter 
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transition (p < 0.05), and notable but not statistically significant for the full-to-half 

transition (Table 1). 

Task-specific Accuracy 

 For task-specific average accuracies, there was a clear drop in the detection of 

microcalcifications and the discrimination between masses with reduced dose at any 

dose reduction level, with statistical significance associated with the full-to-quarter 

transition for calcification detection and for mass discrimination. However, the detection 

of malignant masses did not appear to be much impacted by dose reduction, and the 

detection of benign masses was only affected when the dose was reduced to a quarter 

of the normal level (Table 1, Figure 5).  

Impact of Bias 

 We employed a categorical scoring scheme for the observer performance 

experiment. To assess how this scheme might have biased our task-based results, we 

also repeated part of the experiment giving observers only binary choices (lesion 

present vs. lesion absent, or benign vs. malignant). The categorical scoring scheme 

introduced minimal or no bias, with the results of the two schemes being essentially the 

same (p > 0.5) (Figure 6).  

Timing Performance  

 Including the training set and breaks, the reading of the entire set of images for 

each observer took approximately 2.5 hours. The overall timing results, (Figure 7), 

indicated a discernable impact of dose reduction on the interpretation time. The median 

interpretation times per image were increased from 2.38 ± 0.07 seconds for full dose, to 

2.42 ± 0.09 seconds for half dose to 3.04 ± 0.09 seconds for quarter dose. The 
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differences were found to be statistically significant (p < 0.0001). The individual 

observer results confirmed the same behavior, with the average timing performance of 

the observers appearing to be grossly correlated with their experience and current 

reading volume.  

Discussion 

 Radiation dose associated with mammographic screening procedures has been 

a common concern to the radiology community (28-35). In fact, it was in response to 

such concerns that the US federal government regulated the mammography 

examinations through the Mammography Quality Standard Act (MQSA) of 1992 (36-38). 

Recently, there has been an opportunity to potentially reduce the mammographic dose 

in the transition from analog to digital mammography. Such reductions have been 

explored by a few studies (31, 39-41). Multiple studies have also indicated the 

limitations imposed by anatomical noise on mammographic tasks (42-44) which further 

support such dose reductions. However, concerns about the potential loss of image 

quality and the resultant impact on diagnostic accuracy have prevented any notable 

reduction of radiation dose in clinical operations, with clinical implementations still 

aiming to mostly maintain the dose for digital systems at a level similar to analog 

systems.  

 Our study found that decreasing dose in digital mammography by as much as 

one-half has minimal effect on the detection of malignant masses but a notable impact 

on the detection of microcalcifications, the discrimination between benign and malignant 

masses, and the interpretation time. The findings imply that the influence of reduced 

dose and the associated enhanced noise is mostly in the perception of the high-
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frequency components of the lesion signal, as those components represent the defining 

features of microcalcifications and the distinguishing features that indicate the 

differences between malignant and benign masses.  

 The most important clinical implication of our findings confirms that the 

mammographic dose, even for digital mammography with a potentially higher DQE, has 

an impact on diagnostic accuracy, and thus proper set up and control of the radiation 

exposure is an essential requirement for digital mammography operations. However, 

the small magnitude of the impact in relation to the notable reduction in dose suggests 

that dose may potentially be decreased with limited impact on clinical utility. That 

potential is perhaps better appreciated for certain uses such as extra views for images 

to confirm placement of clips or wires during or after biopsies (45). However, our results 

imply that there might be a potential for modest reduction of dose in screening 

applications as well. The confirmation of that implication should await future studies in 

which accuracy is evaluated at multiple incremental dose levels.  

 The results of our study are consistent with previous research related to dose 

reduction in mammography. Dance, et al and Huda, et al used physical measurements 

to explore the impact of mammographic beam quality and dose reduction on the 

detection of simple simulated lesions (39, 46). Those studies found that dose could be 

reduced by using optimum beam qualities while maintaining a constant signal difference 

to noise ratio. More clinically-based, two additional studies have examined whether 

reduced dose affects lesion detection by radiologists. Using an indirect flat-panel 

detector, Obenauer, et al explored the detection of calcifications by imaging an 

anthropomorphic breast phantom containing simulated calcifications (41). Similarly, 
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Hemdal, et al conducted a human performance experiment using 28 real mammograms 

acquired at full and half dose (31). Both studies found potential for substantial dose 

reduction for digital mammography. These prior studies have either been limited by the 

physical measures of image quality (i.e., signal difference to noise ratio) or the limited 

number of clinical tasks and lesion types examined. Our study, in contrast, explored a 

much larger number of clinical tasks, employing a greater number of images and 

lesions, allowing the results to be more generalizable to a larger patient population. 

 Most diagnostic observer performance experiments are currently based on rating 

of images for the presence of a single type of abnormality into multiple grades, ranging 

from definitely absent to definitely present with multiple grades in between. The number 

of gradations range between 4 to 100 (47-49). While this approach is essential for ROC 

analysis (50, 51), the current de facto standard for evaluating diagnostic systems, it falls 

short of reflecting many diagnostic tasks performed in the clinic today, when an 

examiner needs to make binary decisions about the presence or need for a biopsy for a 

multiplicity of abnormalities that might be depicted by an image. In our study, we asked 

the observers to rate images for the presence of different types of abnormalities without 

confidence ratings. This categorical approach closely emulated the clinical paradigm. It 

also substantially shortened the time required for rating an individual image.  

 While the above approach has a strong appeal in terms of clinical relevance, it 

might be prone to potential biasing problems. A bias might be introduced when the 

assessment of a given diagnosis is impacted by the inclusion of a rating that is not 

relevant to the task at hand. For example, when assessing the discrimination of benign 

and malignant masses on an image, an observer might change his/her natural score if 
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an option is provided for scoring for the presence of microcalcifications (i.e., an 

unrelated option). If that change is more or less for malignant mass images than for 

benign mass images, that would create a bias in the results. Recognizing that this might 

have a potential impact on our results, we performed a supplemental study in which two 

observers were provided with only scoring options relevant to the task at hand. A 

comparison of the results with and without the multiple-scoring option indicated that a 

potential impact of bias was non-existent, at best, or minimal, at worst. The findings 

encourage the use of categorical methodologies for future observer performance 

experiments. 

 Our study has limitations. First, while the results indicate the relative impact of 

dose reduction on various diagnostic tasks in digital mammography, the direct 

relationship of breast dose and diagnosis could only be inferred as the reduction was 

applied only in a relative sense:  For a given image acquired at a specific radiographic 

technique, breast dose is directly related to exposure and noise and thus a relative 

reduction in dose can be achieved by a linear reduction of exposure and a 

corresponding increase in radiographic noise. However, the relationship between 

exposure, dose, and noise is dependent on the kVp, beam filtration, breast composition, 

and breast thickness, which vary from image to image. Thus, while our results can tell 

us what would happen if for a given breast a lower than standard mAs or exposure is 

used, they do not tell us the specific quantitative relationship between glandular breast 

dose and accuracy. Secondly, our study investigated the impact of dose reduction using 

a signal-known exactly paradigm in which the observers knew the approximate location 

of a lesion. This strategy, while eliminating visual search, was implemented to keep 
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other sources of variability under control. However, if we had used the full images and 

incorporated search, we might have possibly observed bigger differences as a function 

of dose, a prospect which cannot be substantiated with our results. Finally, our study 

was based on simulated lesions and dose levels. While the simulations were realistic, 

there are always differences between real and simulated situations, which might have a 

bearing on the findings. 

 In summary, the findings of our experimental study suggest that a reduction of 

radiation dose by as much as one-half can have a measurable but modest impact on 

diagnostic accuracy in digital mammography, particularly in the detection of 

microcalcifications and the discrimination between malignant and benign masses. The 

dose reduction also appears to lengthen the interpretation time. 

Practical Application 

 The results suggest that, given the small magnitude of impact on accuracy in 

response to the drastic reduction of dose, there may be a potential for modest dose 

reductions in digital mammography. While that potential awaits a confirmation by a 

follow-up clinical trial, careful attention should be paid to utilized radiation dose and 

associated image quality when setting up and operating digital mammography units. 
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Appendix 

 To accurately simulate dose reduction in a mammogram, the magnitude of the 

added noise needs to correspond with a proportionate reduction of exposure. In our 

study, we maintained the mean pixel value of the images, but altered the image signal-

to-noise ratio (SNR) to simulate the effects of reduced exposure. The actual SNR of an 

image is related to the Detective Quantum Efficiency (DQE) and the ideal SNR ratio as 

2 2

2( 0) Actual Actual

Ideal

SNR SNRDQE f
SNR q ξ

= = =
⋅

, 

where q represents the ideal SNR squared per unit exposure and ξ is the exposure 

(52). Using measured values of the DQE for the mammographic detector (13, 14) and 

the estimated values for the ideal SNR, calculated using an x-ray modeling program 

(xSpect, Henry Ford Health System, Detroit, Michigan) (10), this equation was solved to 

determine the actual SNR at different exposure levels. The scalar magnitude of the 

noise was then determined from the computed SNR values using  

σ ξ= −AdditionalNoise In Actual ActualFullDose ReducedDose
SNR SNR  

where σ indicates the standard deviation of the added noise, and ξin is the exposure 

associated with the input image being modified.  
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Tables 
 
Table I. Summary statistics of the results indicating the reduction in accuracy in average 

observer performance. Positive values correspond to a reduction and negative values to 

an enhancement. Statistically significant transitions at 95% confidence level (p < 0.05) 

are indicated with a star.  

 

Task 
Full- to half-    

dose 
transition 

Full- to 
quarter-dose 

transition 
Overall Accuracy (all 
tasks combined) 0.05 0.21* 

Accuracy in the detection 
of micro-calcifications 0.06 0.22* 

Accuracy in the detection 
of benign masses 0.00 0.10 

Accuracy in the detection 
of malignant masses -0.01 0.02 

Accuracy in the 
discrimination between 
malignant and benign 
masses  

0.05 0.14* 
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Figure Captions 

 

Fig. 1: Examples of mammographic images used for the observer experiment at full 

dose (first column), half dose (second column), and quarter dose (third column) with 

microcalcification distributions (first row), malignant masses (second row), and benign 

masses (third row). 

 

Fig. 2: An example contingency table illustrating its use to deduce performance results 

for the example task of the detection of malignant masses. 

N = normal 

C = microcalcification 

B = benign mass 

M = malignant mass 

 

Fig. 3: The contingency tables at the three dose levels, full dose (a), half dose (b), and 

quarter dose (c), averaged across observers, indicating the fraction of which the 

observers scored the images of a given class. 

 

Fig. 4: Variation in the overall accuracy, representing the average of all the diagnostic 

tasks involved, as a function of dose level for individual observers and the average 

across observers. The variance for each observer was calculated using bootstrap 

analysis, with error bars representing one standard deviation. The figure illustrates that 
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for each observer and across all observers, overall accuracy is reduced as radiation 

dose decreases. 

 

Fig. 5: The impact of dose level on the detection of microcalcifications, malignant 

masses, and benign masses, and the discrimination of malignant and benign masses. 

The bar data correspond to the averages from all observers, with error bars calculated 

in a similar fashion as in Figure 4. With the full-to-quarter dose reduction, there was a 

significant decrease in calcification detection and mass discrimination. The detection of 

malignant masses was reduced only at the one-quarter dose level, and the detection of 

benign masses changed little when radiation dose was reduced. 

 

Fig. 6:  The potential impact of bias in the detection of microcalcifications associated 

with multiplicity of observer grading tasks illustrated with the results acquired with 

potential bias and adjusted to remove such potential bias. Error bars represent one 

standard deviation. Nearly identical results were found for the two scoring schemes, 

categorical and two-task, illustrating that the categorical scoring introduced minimal or 

no bias. 

 

Fig. 7:  Number of images unrated by a given time. The three lines compare the reading 

times for images with signal to noise ratios reflective of full clinical dose, half dose, and 

quarter dose. A statistically significant relationship was found between radiation dose 

and observer interpretation time. 
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Improving mammographic decision accuracy by incorporating
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ABSTRACT. Mammography is currently the most established technique for the early
detection of breast cancer. However, mammography would benefit from further
improvements as it does produce some errors, such as not finding all early-stage
cancers. The objectives of this study were first, to measure the timing of correct and
incorrect reading decisions in mammography and second, to exploit those
dependencies to improve accuracy in mammographic interpretation. To address these
objectives, an experiment was conducted where experienced breast imaging
radiologists reviewed 400 mammographic regions equally divided among images that
contained simulated benign masses, malignant masses, malignant microcalcifications
and no lesions. The experiment recorded the radiologists’ decision as well as the length
of time the mammogram was interpreted in. The experiment results showed that
incorrect detection as well as incorrect classification decisions were associated with
longer interpretation times (p,0.0001). The timing results were used to create a model
that would flag cases for review that had a higher probability of error. The flagged
cases had a median accuracy drop of 13% for detection decisions and 16% for
classification decisions compared with unflagged cases. This suggests that
interpretation time can be incorporated into mammographic decision-making in order
to identify cases with higher probabilities of perceptual error that require further
review.
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Mammographic interpretation is a difficult perceptual
task, with 20–40% of cancers missed in the initial
mammographic screening [1–4]. In addition to missed
cancers, another perceptual error is the substantial
number of false positives as the specificity of mammo-
graphy ranges from 88% to 98% [1–3]. Reducing the
number of missed cancers and increasing specificity in
mammography should be one of the goals of perception
science.

Previous perception studies have decomposed inter-
pretation errors into three categories, based on the length
of time the radiologist focuses on a potential lesion:
search errors, recognition errors and decision-making
errors [5, 6]. These studies indicate that search errors
occur when the radiologist does not focus once on the
abnormality; recognition errors happen when the radi-
ologist briefly examines a potential abnormality, but
dismisses it very quickly; and decision-making errors
arise when a radiologist examines a potential abnorm-
ality for a extended period of time, but still incorrectly
classifies it [5]. Some previous studies have investigated

these perceptual errors, but have generally considered
them together [5, 7–9].

This study focused on the third category, decision-
making errors. For screening, these errors occur after the
radiologist has searched the image and recognized the
area as a potential abnormality, but then incorrectly
classifies the area as not containing a lesion. These errors
can be more difficult to avoid than other perceptual
errors because while improving the conspicuity of
lesions can be expected to reduce search errors and
recognition errors, it would not necessarily improve
decision-making performance. In fact, decision-making
errors have been suggested to be the primary perceptual
errors in chest radiography [10]. To better understand
and decrease decision-making errors, the purpose of this
study was two-fold: (1) to measure the timing of correct
and incorrect reading decisions in mammography and
(2) to exploit those dependencies to improve the
accuracy of mammographic interpretation.

Methods and materials

This study isolated decision-making errors by controll-
ing the search process and lesion variability. An image
set of 400 mammographic regions was created by
inserting simulated breast masses and microcalcifica-
tions into digital mammograms. The mammographic
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regions were then reviewed by experienced breast
imaging radiologists, who rated whether the mammo-
grams contained a lesion or not, and classified the lesion.
The ratings and interpretation time for each observer
were analysed to understand decision-making errors and
whether incorporating interpretation time could improve
accuracy.

Mammographic images

A database of 984 de-identified four-view mammo-
grams was obtained with approval by the institutional
review board (IRB). Each mammogram had been
acquired on an indirect flat-panel mammography detec-
tor (GE Senographe 2000D; GE Medical Systems,
Waukesha, WI) [11, 12]. Out of this database, 200
craniocaudal views were chosen for further analysis.

Lesion simulation

Simulated mammographic lesions, the realism of
which was verified in previous studies, were embedded
in the digital mammograms [13–15]. These simulated
lesions included typically benign masses (oval circum-
scribed and oval obscured), typically malignant masses
(irregular ill-defined and irregular spiculated), and
typically malignant microcalcifications (fine linear
branching and clustered pleomorphic). The contrast for
these lesions was determined by a Monte Carlo model
(xSpect) of the mammographic image acquisition [16].
The contrast was reduced by the expected scatter, which
was calculated from previous models [17].

Image processing

The images were processed by a two-stage process to
enhance fine detail and provide sufficient contrast at the
skin line [18, 19]. After this processing, the histogram of
each image was analysed to find the appropriate
window and level. The window and level was approxi-
mated by a sigmoid curve, which provided a smooth
transition at the extremes of the greyscale range. All
image processing was evaluated by an experienced
breast imaging radiologist (JAB: 7 years experience,
5000 cases per year). The radiologist did not participate
in the observer performance experiment to minimize
bias.

Observer performance experiment

The mammograms were reviewed by five experienced
radiologists (average 11.2 years of experience as radiol-
ogist attending, average 9.8 years as mammography
attending, average 160 cases per week). The radiologists
reviewed images on a custom graphical user interface
(GUI) that displayed a 5.12 cm 6 5.12 cm region of the
mammogram for interpretation. The radiologists rated
each image based on whether it appeared to contain
microcalcifications, a benign mass, a malignant mass, or
no lesion. Images were viewed three times, once on a

medical-grade liquid crystal display (LCD) (Nova V;
National Display Systems, Morgan Hill, CA; 165 mm
pixels) and twice on a medical-grade CRT (MGD 521;
Barco LLC, Duluth, GA; 148 mm pixels). For each
reading, the interface recorded the radiologist interpreta-
tion time, or the interval between the time the mammo-
gram was displayed and the time the radiologist
recorded his or her rating.

The observer experiment controlled for other factors
by adopting the following constraints. Each image was
displayed at full resolution to maintain image fidelity.
The image centre was indicated by four whiskers on each
side in order to minimize image search. To reduce rating
correlations between sequential images, radiologists
could not return to an image once it had been rated.
The radiologists viewed each display straight ahead and
centred as some displays, such as LCDs, have different
properties off-axis [20]. To maintain a similar image
appearance, the radiologists could not adjust the image
window and level. Finally, the display order, image order
and image orientation were randomized to further
reduce potential biasing effects.

Statistical analysis

The data were analysed to determine the performance
at two different clinical tasks. One task was a screening
task where radiologists must detect a mammographic
lesion. For this detection task, the radiologists would be
correct if they detected the lesion, even if they incorrectly
classified it as benign or malignant. The other task was a
diagnostic task where the radiologists had to differenti-
ate between benign and malignant breast masses. In this
classification task, the lesion had been detected and the
radiologists were judged on whether the lesion was
classified appropriately. For both tasks, accuracy was
computed as the average of sensitivity and specificity.

For each task, the data were analysed to learn whether
incorrect and correct decisions correlated with different
interpretation times. First, the interpretation time was
analysed using survival analysis, where the ‘‘survival
time’’ of an image was defined as the length of time it
remained unrated. The survival curves were plotted to
qualitatively show whether rating errors affected inter-
pretation time. Next, the interpretation time distributions
for correct and incorrect ratings were compared using
statistical tests. A Wilcoxon test compared the centre of
the distributions, while a Brown-Forsythe test compared
the width of the distributions [21]. Finally, the inter-
pretation times were modelled as a function of decision
type (e.g. true positive, false positive) using a
Proportional Hazards model, allowing a further test of
whether rating errors affected interpretation time [22,
23].

After testing whether decision types had a statistically
significant impact on interpretation time, two models
were constructed to exploit that information. The first
model used a nominal logistic regression fit to fit the
mammogram truth as a function of the observer ratings
alone, interpretation time only, or observer ratings
combined with interpretation time. This fit was then
used to predict mammogram truth for given observer
data (either ratings, timing, or ratings plus timing). The
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second model operated similarly to a computer aided
detection (CAD) system as it did not make decisions on
the mammogram truth, but rather flagged cases with
higher probability of incorrect decisions for further
review by radiologists. To decide which cases to flag, a
linear discriminant was used to find a threshold time
that best separated false positives from true positives
and false negatives from true negatives. Cases with
interpretation times above these thresholds were flagged
as they had greater probability of being incorrect. These
flagged cases should then be given further review by
radiologists in order to improve their accuracy. Each
model was evaluated for sensitivity, specificity and
accuracy with the variance of each quantity estimated
using a bootstrap with 10 000 samples [24].

Results

Detection task interpretation time

Figure 1 demonstrates the timing results for the
detection task. The figure shows that incorrect decisions
had longer interpretation times than true decisions. The
interpretation time differences between the four decision
categories (false positives, false negatives, true positives
and true negatives) were statistically significant both in
terms of the mean time (Wilcoxon’s x25676, degrees of
freedom (DOF)53, p,0.0001) and the timing variance
(Brown-Forsythe’s F578.5, DOF53, p,0.0001). As
shown in Table 1, false positives had statistically
significant longer interpretation times than true positives
and false negatives had longer interpretation times than
true negatives. The interpretation time’s correlation with
decision category was confirmed with a Proportional
Hazards model. This model also found that decision
categories had a statistically significant effect on inter-
pretation time (x2 5462, DOF53, p,0.0001).

Table 2 illustrates the results of the first predictive
model incorporating interpretation time. The table shows

that a model based on interpretation time and observer
ratings performs slightly better than a model based on
observer ratings alone, but not by a statistically sig-
nificant amount. Interestingly, a model based solely on
interpretation time generally performs above chance by a
statistically significant amount, suggesting that interpre-
tation time does provide useful information for predict-
ing mammographic truth.

Figure 2 illustrates the results of the second model
which flagged suspicious cases for further review. The
figure shows that flagged cases generally had statistically
significant drops in sensitivity and specificity. Table 3
shows the magnitude of the accuracy drop from the
unflagged cases to the flagged cases. For each observer,
there was a statistically significant drop in accuracy for
the flagged cases.

Classification task interpretation time

Figure 3 illustrates the difference in interpretation
times for correct and incorrect classifications of masses.
For each observer, incorrect decisions had longer inter-
pretation times. As with detection task, the mean of the
interpretation times were different for correct and
incorrect decisions (Wilcoxon’s x25269, DOF53,
p,0.0001) and the width of the interpretation times
distributions differed between incorrect and correct
classification decisions (Brown-Forsythe’s F537.1,
DOF53, p,0.0001). The relationship of interpretation
time to decision category (false positive, true positive,
false negative, true negative) was confirmed using a
Proportional Hazards model. This model also found
decision categories had a statistically significant effect on
interpretation time (x2 5191, DOF53, p,0.0001).

Figure 4 shows the results of the flagging model for
this classification task. For each observer, sensitivity and
specificity dropped for the flagged cases. Table 4
illustrates that there is a statistically significant difference
drop in accuracy for flagged cases.

Figure 1. Interpretation times for correct and incorrect detection for detection task.
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Discussion

There has been previous work in investigating
perceptual errors. One common means of investigation
has been eye-position analysis [5, 7–9]. Eye position
analysis infers the type of error based on the amount of
time the radiologist focused on a potential abnormality.
Eye-tracking relies on the central assumption that foveal
attention indicates visual processing of particular areas.
This introduces some uncertainty into the results, as
foveal focus can include at least a 1˚ range.
Notwithstanding these limitations, previous eye-tracking
experiments largely agree with our detection timing
results. For pulmonary nodule detection, incorrect
decisions were associated with longer interpretation
times for experienced radiologists [25]. For breast cancer
screening, previous studies found that false positive
results from normal mammograms had longer inter-
pretation times than true positive results [5, 8, 9, 26] and
false negative results had longer times than true negative
results [5].

This study showed that interpretation time did
correlate with decision category. These results could
then be exploited. While a predictive model using
interpretation time and observer ratings did not produce
statistically significant improvements over a model using
observer ratings alone, a flagging model similar to CAD
systems did show promise. The flagging model could
be used clinically to indicate mammograms requiring
further review and potentially improve both the
sensitivity and specificity of screening and diagnostic
mammography.

In conclusion, this study investigated the potential for
using interpretation time as a means of improving
accuracy in screening and diagnostic tasks. Detection
errors and classification errors had longer interpretation
times than correct detection and classification decisions.
Using linear discriminant analysis, we established a

flagging program to highlight cases that had a greater
probability of incorrect detection or classification deci-
sions. The flagging creates an opportunity to improve
mammographic accuracy by identifying cases with
statistically lower sensitivities and specificities for
further review.
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Table 1. Median interpretation time for different contingency table conditions. The error bars represent the 95% confidence
interval of the median

Observer True negative False negative True positive False positive

1 2.19¡0.14 2.51¡0.20 1.84¡0.05 3.62¡0.42
2 1.94¡0.08 2.09¡0.15 1.76¡0.03 3.67¡0.81
3 3.90¡0.23 4.01¡0.32 1.99¡0.05 3.25¡0.65
4 1.95¡0.16 2.03¡0.18 1.64¡0.03 2.94¡0.32
5 1.82¡0.15 2.32¡0.22 1.70¡0.04 2.72¡2.07

Figure 2. Differences in (a) sensitivity and (b) specificity for
detection task with interpretation time flagging.

Table 2. Accuracy of models that incorporate rating data
only, timing data only, or combine rating and timing data.
The error bars represent the 95% confidence interval of the
mean

Observer Accuracy

Rating only Timing only Rating + timing

1 0.84¡0.03 0.65¡0.03 0.86¡0.02
2 0.91¡0.02 0.60¡0.04 0.91¡0.02
3 0.86¡0.03 0.76¡0.03 0.86¡0.02
4 0.87¡0.02 0.63¡0.03 0.88¡0.02
5 0.85¡0.02 0.53¡0.04 0.86¡0.02
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Table 3. Improvement in detection accuracy of unflagged
cases over flagged cases. An asterisk indicates a statistically
significant difference. The error bars represent the 95%
confidence interval of the mean

Observer Difference

1 0.17¡0.06*

2 0.13¡0.06*

3 0.11¡0.06*

4 0.13¡0.06*

5 0.08¡0.05*

Table 4. Improvement in classification accuracy of
unflagged cases over flagged cases. An asterisk indicates
a statistically significant difference. The error bars repre-
sent the 95% confidence interval of the mean

Observer Difference

1 0.16¡0.09*

2 0.16¡0.09*

3 0.19¡0.08*

4 0.11¡0.09*

5 0.14¡0.09*

Figure 3. Interpretation
times for masses correctly
and incorrectly classified
as benign or malignant.
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Original Investigations
Comparison of LCD and CRT Displays Based on
Efficacy for Digital Mammography1

Robert S. Saunders, Ehsan Samei, Jay Baker, David Delong, Mary Scott Soo, Ruth Walsh, Etta Pisano
Cherie M. Kuzmiak, Dag Pavic

Rationale and Objectives. To compare two display technologies, cathode ray tube (CRT) and liquid crystal display
(LCD), in terms of diagnostic accuracy for several common clinical tasks in digital mammography.

Materials and Methods. Simulated masses and microcalcifications were inserted into normal digital mammograms to produce
an image set of 400 images. Images were viewed on one CRT and one LCD medical-quality display device by five experienced
breast-imaging radiologists who rated the images using a categorical rating paradigm. The observer data were analyzed to deter-
mine overall classification accuracy, overall lesion detection accuracy, and accuracy for four specific diagnostic tasks: detection
of benign masses, malignant masses, and microcalcifications, and discrimination of benign and malignant masses.

Results. Radiologists had similar overall classification accuracy (LCD: 0.83 � 0.01, CRT: 0.82 � 0.01) and lesion detec-
tion accuracy (LCD: 0.87 � 0.01, CRT: 0.85 � 0.01) on both displays. The difference in accuracy between LCD and
CRT for the detection of benign masses, malignant masses, and microcalcifications, and discrimination of benign and ma-
lignant masses was –0.019 � 0.009, 0.020 � 0.008, 0.012 � 0.013, and 0.0094 � 0.011, respectively. Overall, the two
displays did not exhibit any statistically significant difference (P � .05).

Conclusion. This study explored the suitability of two different soft-copy displays for the viewing of mammographic im-
ages. It found that LCD and CRT displays offer similar clinical utility for mammographic tasks.

Key Words. Digital mammography; observer performance; soft-copy display; liquid crystal display; LCD; cathode ray
tube; CRT.
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A recent study has demonstrated the effectiveness of
digital mammography in detecting early-stage breast
cancer, especially in dense breast tissue (1). The results
of that study will encourage the increased use of digital
mammography for clinical screening. Digital mammog-
raphy differs from film-screen systems in that it sepa-
rates image acquisition, image processing, and display
components such that each may be independently opti-
mized (2– 4). To optimize the display components, it
must be determined how soft-copy displays affect diag-
nostic performance for specific mammographic tasks,
such as the detection of microcalcifications and masses.
This question is important both to assess the clinical
utility of each display system and to provide data for
individual radiology practices when purchasing new

display systems.
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Two competing soft-copy display technologies are
commonly used to display digital images, cathode ray
tube (CRT) and liquid crystal display (LCD). Tradition-
ally, soft-copy reading was done on CRTs, but LCDs are
rapidly becoming more commonly used for reading medi-
cal images. Because these displays rely on different phys-
ical processes, their resolution and noise properties differ
markedly. CRTs form images by an electron beam strik-
ing a phosphor layer, which produces visible light. They
exhibit markedly lower resolution than LCDs primarily
because of light scattering inside the phosphor layer and
the width of the electron beam (5,6). Their resolution fur-
ther degrades over time from decreasing phosphor effi-
ciency and the necessitated increases in the electron beam
intensity (7,8). LCDs use liquid crystal elements to pre-
cisely control the amount of light from each pixel and are
known for their excellent resolution, which is predomi-
nantly limited by their pixel size (9). Therefore, a CRT
and LCD with similar nominal pixel sizes and matrix
sizes would have different resolution properties because
of their pixel structure (2). However, LCDs exhibit signif-
icant fixed pattern noise because of the electronics needed
to operate the liquid crystals within each pixel (10). In
contrast, the noise levels of a CRT, governed primarily by
phosphor grain nonuniformities at the faceplate, are often
lower than those of the LCDs (2). It is unclear how the
differing resolution and noise characteristics of LCDs and
CRTs affect the clinical utility of these soft-copy dis-
plays.

The purpose of this study was to measure how well
breast-imaging radiologists perform clinical tasks using
typical LCD and CRT displays. For each display, the
overall classification accuracy and overall lesion detection
performance was calculated. In addition, this study exam-
ined human performance at specific clinical tasks, includ-
ing the detection of benign masses, malignant masses, and
microcalcifications, and the discrimination of benign and
malignant masses. By examining human performance on
these tasks, we aimed to determine if one technology
merits preferential use in digital mammography.

MATERIALS AND METHODS

The study was conducted in multiple steps. First, simu-
lated masses and microcalcifications were inserted into
normal digital mammograms using an established simula-
tion routine. The images were rated by experienced

breast-imaging radiologists, classifying each image ac-
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cording to what type of lesion, if any, it contained. The
observer data were analyzed to assess overall classifica-
tion accuracy and performance on specific clinical tasks.
The following sections detail each of these steps.

Display Devices
This study compared two commercial medical displays,

an LCD and a CRT (2,11). Table 1 shows the specifica-
tions of each display, including information provided by
the display manufacturer and luminance measurements
conducted in our laboratories (2,11). The two displays
were similar in terms of matrix size and pixel pitch. Both
displays were calibrated according to the Digital Imaging
and Communications in Medicine and American Associa-
tion of Physicists in Medicine TG18 standards before use
(12,13); all other properties, such as luminance, stayed at
the default manufacturer setting.

Mammographic Backgrounds
With prior permission from the Institutional Review

Board, 200 craniocaudal images were selected from a
deidentified database of digital mammograms acquired on
a clinical indirect flat panel mammography system (GE
Senographe 2000D, GE Medical Systems, Waukesha, WI)
(14,15). The images were acquired with a molybdenum
anode, molybdenum or rhodium filtration, and a tube po-
tential range from 25 to 30 kVp. The image set had com-
pressed breast thicknesses ranging from 2.7 cm to 7.4 cm
and breast compositions ranging from almost entirely fat
to extremely dense.

Lesion Simulation
To investigate lesion detection and discrimination, an

Table 1
Specific Properties of the LCD and CRT Displays Used in
this Study

CRT LCD

Manufacturer Barco, LLC National Display Systems
Model MGD 521 Nova V
Display card Barco MP1H (10-bit) RealVision MD5mp (10-bit)
Pixel pitch (mm) 0.148 0.165
Matrix size 2048 � 2560 2048 � 2560
Active display

area 304 mm � 380 mm 338 mm � 422 mm
Lmin (cd/m2) 0.52 0.52
Lmax(cd/m2) 308 371

CRT: cathode ray tube; LCD: liquid crystal display.
established lesion simulation routine was used to insert
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simulated masses and microcalcifications into the mam-
mograms. This routine relied on the measured characteris-
tics of real lesions to create simulated lesions with a real-
istic appearance. The routine produced three different
types of lesions: typically malignant masses (modeled
after irregular ill-defined and irregular spiculated
masses), typically benign masses (modeled after oval cir-
cumscribed and oval obscured masses), and typically ma-
lignant microcalcifications (modeled after fine linear
branching and clustered pleomorphic microcalcifications).
Breast imaging radiologists have previously confirmed the
realism of our simulated lesions (16–18).

The lesion size and subtlety were chosen based on a
preliminary experiment to achieve 80% overall classifica-
tion accuracy. By choosing contrasts that led to this level
of overall classification accuracy, the lesions were not so
subtle that the observers missed all of them, but not so
conspicuous as to be detected by every observer. To
achieve this accuracy, masses needed to have a diameter
of 3.3–4.1 mm. Although these sizes might be smaller
than that typically acted on in the clinic, they provided
the appropriate detection level for our “location-known-
exactly” study. Individual microcalcifications were 0.35
mm in average diameter inside microcalcification distribu-
tions of 4–7 mm diameter, which is similar to that en-
countered in standard clinical practice. The lesions were
scaled to the appropriate contrast as determined by an
x-ray model (xSpect software) (19), assuming an average
breast (50% glandular/50% adipose tissue) and accounting
for anode material, tube filtration, beam energy, and com-
pressed breast thickness. The lesion contrast was further
reduced according to the expected scatter to primary ra-
tios computed based on previous investigations (20), ac-
counting for beam energy and compressed breast thick-
ness, with the scatter to primary ratios corrected for the
scatter rejection by the antiscatter grid. The scatter to pri-
mary ratios for our mammograms, after correction for the
antiscatter grid, ranged from 0.07 to 0.22 with an average
of 0.14. The simulated lesions were added to the mammo-
grams in a logarithmic scale to model the x-ray attenua-
tion process. The scatter-adjusted logarithmic contrasts for
masses averaged 0.069 (ranging from 0.048 to 0.10) and
for microcalcifications averaged 0.10 (ranging from 0.070
to 0.14).

Figure 1 illustrates how lesions were paired with nor-
mal mammograms to create a set of 400 images. For two
tasks, mammographic backgrounds were paired to reduce

statistical variance. For example, one mammographic
background produced two images—one with a microcal-
cification lesion and one with no lesion. This particular
scheme was chosen to minimize the number of times a
particular mammographic background was viewed by a
reader, reducing potential memory problems.

Image Postprocessing
All detector manufacturers apply image postprocessing

to the raw detector image to create an image appearance
acceptable to radiologists. The lesion simulation routine
required raw images from the detector, which prevented
the use of manufacturer postprocessing. Therefore, a basic
two-stage postprocessing algorithm, boosting fine and
broad contrast details (21,22), was used to create image
appearances typical of those used clinically. The algo-
rithm applied identical image processing to all images to
eliminate the confounding effects associated with varia-
tions in image postprocessing. After this application, a
histogram analysis was used to determine an optimal win-
dow and level setting for each image. The determined
window and level was fit by a sigmoid curve to provide a
smooth transition at the extremes of the grayscale range
and the sigmoid function was then applied to all images.
The appropriateness of the window and level settings was

Figure 1. Distribution of images in reading set.
verified by a radiologist with 7 years experience in breast
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imaging, reading about 5000 cases/year (JAB). This radi-
ologist did not participate in the later observer experiment
to minimize bias.

Observer Performance Experiment
Five experienced breast imaging radiologists partici-

pated in the observer experiment, representing two differ-
ent academic medical centers. The radiologists had an
average reading volume of 160 cases per week (ranging
from 80 to 300) of screening mammography. They had
served an average of 11.2 years as a radiology attending
(range: 6–17 years) with an average of 9.8 years as an
attending in mammography (range: 3–17 years).

The radiologists reviewed the images in a room with
low ambient lighting using a customized graphic user in-
terface. This interface was developed to emulate the clini-
cal paradigm while minimizing reading time. The inter-
face displayed a 5.12 cm � 5.12 cm image extracted
from the center of each mammogram (Fig. 2). Images
were shown sequentially, one at a time. All images were
displayed at full resolution (one image pixel represented
by one display pixel). After viewing the displayed mam-
mogram, the radiologist rated the image into one of four
categories: microcalcifications present, a benign mass
present, a malignant mass present, or no lesion present.
The radiologists were asked to view each display straight
ahead and centered to minimize any confounding effects
from off-axis viewing (23). The radiologists were allowed
to choose their viewing distance based on their comfort
with most choosing a distance of approximately 50 cm.
To maintain the consistency of the image appearance for
all observers, observers were not allowed to window and
level the images.

The experiment began with a training set of 100 im-
ages to familiarize the radiologist with the lesion types
and the graphic user interface, with feedback given to the
radiologist after each image was rated. This proceeded to
the reading set, consisting of 2 sessions of 200 images
viewed on each of the two display devices for a total of
800 ratings (2 sessions � 200 images � 2 displays). This
rating scheme improved statistical power as it controlled
for image effects because we could compare an image’s
rating when it was viewed on a LCD versus when it was
viewed on an a CRT. To minimize potential biasing ef-
fects, the display order, the image order, and the image
orientation were randomized and radiologists were given

a 5-minute break between sessions.
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Statistical Analysis
The observer data were first analyzed to show how

images with a given lesion were rated. These ratings were
summarized in contingency tables in which each element,
labeled �Truth, Rating, represented the number of images from
a given truth state that were rated into a given rating cate-
gory. The contingency tables were further summarized
into an overall classification accuracy metric representing
the percentage of mammograms correctly rated by an ob-
server as

Overall Classification Accuracy �
�NN � �CC � �BB � �MM

Total Number of Cases
,

(1)

where �Truth, Rating represents the number of images from a
given truth state that were rated into a given rating cate-
gory, N corresponds to no lesion category, C to the mi-
crocalcification category, B to benign mass category, and
M to malignant mass category. The associated variance
was calculated using a bootstrap analysis, which resa-
mpled the image set into 10,000 bootstrap samples (24).
The overall classification accuracy and its associated vari-
ance were calculated both individually and jointly for
each display and for each observer. The contingency ta-
bles were also summarized into a metric examining over-
all lesion detection accuracy, which was computed as the
average of sensitivity and specificity of detecting a lesion.
For overall lesion detection accuracy, a true positive was
defined as detecting a lesion within an abnormal mammo-
gram, even if the observer misclassified the lesion as be-
nign or malignant. The variance for overall lesion detec-
tion accuracy was also calculated using bootstrap analysis.

The data were also analyzed for accuracy at several
clinical tasks, including the detection of microcalcifica-
tions, detection of benign masses, detection of malignant
masses, and the discrimination of benign and malignant
masses. For the example task of microcalcification detec-
tion, sensitivity and specificity were calculated as follows:

Sensitivity :
�CC

�CC � �CN

Specificity :
�NN

�NN � �NC

. (2)

where �Truth, Rating represents the number of images from a

given truth state that were rated into a given rating cate-
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gory, N corresponds to no lesion category, and C to the
microcalcification category. The average of sensitivity and
specificity was the task accuracy. The associated vari-
ances for each clinical task were similarly calculated

Figure 2. Example images at resolutions corresponding to the li
rows include benign masses (a, b) and microcalcifications (c, d),
column shows images at CRT resolution.
both individually and jointly for each observer and for
each display using bootstrap analysis, which resampled
the paired mammographic backgrounds into 10,000
bootstrap samples. For each task, statistical significance
was estimated using a P values generated by a paired

crystal display (LCD) and cathode ray tube (CRT) displays. The
the left column shows images at LCD resolution and the right
quid
with
t-test (25).
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RESULTS

In terms of overall classification accuracy, the LCD
and CRT appeared to offer similar performance (P �
.63), as shown in Table 2. This similarity also held true
for overall lesion detection, which measured the ability of
observers to detect a lesion even if they misclassified it as
benign or malignant. Note that overall classification accu-
racy would theoretically range from 0.25 (chance in a
four-category scheme) to 1 (perfect accuracy), whereas
the detection accuracies would range from 0.5 (chance) to
1 (perfect accuracy). Table 2 also shows performance
metrics for four specific clinical tasks, along with associ-
ated variances, averaged across all observers. All four
specific task performances appeared similar for both dis-

Table 2
Mean Performance on Two Displays, Includin
Lesion Detection Accuracy, and Task Perform
Observers

Overall classification accuracy
Overall lesion detection
Detection of microcalcifications
Detection of benign masses
Detection of malignant masses
Discrimination of benign and malignant masses

CRT: cathode ray tube; LCD: liquid crystal dis

Table 3
Average Observer Ratings for Each Image Tr

LCD Normal Microca

Truth
Normal 87% 2
Microcalcification 18% 78
Benign mass 5.4% 0
Malignant mass 15% 1

CRT Normal Microca

Truth
Normal 83% 3
Microcalcification 13% 84
Benign mass 8.8% 0
Malignant mass 14% 1

CRT: cathode ray tube; LCD: liquid crystal dis
plays with all differences well within the associated vari-
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ances of the experiment. Although the accuracy tended to
be higher for the LCD for most tasks, the CRT had
higher accuracy for the microcalcification detection. None
of these differences was statistically significant (P � .23).

Table 3 shows the contingency tables for the average
observer. The contingency tables show that most images
were classified correctly on both displays. As shown in
Fig. 3, an examination of the misclassifications reveals
that benign masses were sometimes rated as malignant
masses and vice versa, indicating observers had some
difficulties discriminating the two mass types. However,
the contingency tables for the CRT and LCD were gener-
ally similar, implying that the observers performed simi-
larly on both displays.

Performance averaged across observers might mask

erall Classification Accuracy, Overall
e for Four Clinical Tasks, Averaged Over All

LCD CRT P Value of Difference

3 � 0.01 0.82 � 0.01 .63
7 � 0.01 0.85 � 0.01 .22
9 � 0.02 0.91 � 0.01 .28
6 � 0.01 0.94 � 0.01 .23
8 � 0.02 0.87 � 0.02 .52
3 � 0.01 0.92 � 0.01 .55

.

tate

Rating

ation Benign Mass Malignant Mass

2.2% 8.2%
0.8% 4.0%

88% 7.0%
5.4% 79%

Rating

ation Benign Mass Malignant Mass

2.2% 11%
0.6% 2.0%

82% 9.2%
4.8% 80%

.

g Ov
anc

0.8
0.8
0.8
0.9
0.8
0.9
uth S

lcific

.6%
%
.0%
.0%

lcific

.8%
%
.4%
.2%
differences at the individual observer level. Figure 4 illus-



Figure 4. Overall classification accuracy for each observer.

Figure 3. Rating distribution for each truth state and each display for
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trates the overall classification accuracy for each observer
and display. Observers A and D had similar performance
on each display, observers B and E achieved slightly
higher accuracy on the LCD, whereas observer C showed
the opposite effect. This trend among observers generally
held true for the individual task performances, except for
the detection of microcalcifications where observers A, C,
and D performed slightly better on the CRT than on the
LCD. The individual observer results suggest that some
observers might perform better on particular display de-
vices, although there is not sufficient statistical power to
substantiate this claim.

DISCUSSION

This study examined how different digital displays
affect clinical performance in mammography. By insert-
ing simulated masses and microcalcifications into normal

the average observer.
clinical cases, this investigation could control for lesion
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size, contrast, breast density, and anatomic features. Le-
sion detection and discrimination were determined
through an observer performance experiment employing
five experienced radiologists. The results of this study
suggested that display modality (LCD vs. CRT) had little
impact on diagnostic accuracy.

The two displays yielded similar performance, even
though the resolution of the two displays differed substan-
tially, as shown in Fig. 5a (2). This similarity in perfor-

Figure 5. Resolution (left, a) and noise (right, b) evaluated in this
experiment. The resolution graphs plot the resolution of the dis-
plays and the resolution of the entire system, accounting for both
display and detector. The detector resolution, reported previously
(14), had been appropriately adjusted to account for the display
magnification by scaling the frequencies by the ratio of the dis-
play pixel size to the detector pixel size assuming each detector
pixel is represented by a single display pixel.
mance may be explained on several grounds. First, the

1324
resolution advantages of the LCD may be offset by its
increased noise, as shown in Fig. 5b (2). Second, the sim-
ilar performance may have resulted from the limited reso-
lution of the mammography detector (15). To account for
this influence, Fig. 5a plots the resolution of the entire
imaging system, including the resolution of the display
devices and the resolution of the detector. The difference
in resolution between the two displays was reduced after
accounting for the resolution of the detector. However,
the LCD detector system still has superior resolution to
the CRT detector system. Third, although the displays
have different resolution and noise, the limitations of the
human visual system may mean that human observers
perceive the two displays to have similar resolution and
noise properties (2). Finally, the similarity may be ex-
plained by the substantial experience of the radiologists
deployed in our study. All radiologists in this study were
experienced in breast imaging and read a substantial num-
ber of cases per year. Radiologists with less experience
may be more affected by different displays. Regardless of
the reasons, our study clearly found that experienced radi-
ologists had similar accuracy at clinical tasks on the LCD
and CRT displays.

There has been little prior work examining the impact
of different soft-copy display devices on clinical perfor-
mance. Three earlier works examined observer perfor-
mance for different chest radiography tasks, the detection
of pulmonary nodules and detection of catheters, but did
not find statistically significant differences between LCDs
and CRTs (26–28). A study on breast mass detection
(23,29) found that LCDs yielded slightly better perfor-
mance than CRTs, but not by a statistically significant
margin (Az � 0.91 � 0.01 for LCDs vs. Az � 0.90 �
0.02 for CRTs) (23). Our study examined a wider range
of clinical tasks, including the detection of benign and
malignant masses and the detection of microcalcifications
and the discrimination of masses. In addition, our work
employed more than twice the number of anatomical
backgrounds (200 mammographic backgrounds versus 80
in other work) and mass templates (200 versus 80). The
findings of our study are consistent with that of previous
studies in concluding that the impact of display modality
on diagnostic accuracy is extremely limited (23).

This experiment differed from previous studies in that
it used a categorical rating paradigm. This type of scoring
improved the throughput of the observer experiments,
allowing observers to view the 800 images of this study
in a short time. The gains in throughput may lower the

variance, as the observer could rate more images in a



Academic Radiology, Vol 13, No 11, November 2006 COMPARISON OF LCD AND CRT DISPLAYS
shorter period of time although on a coarser scale. In ad-
dition, the rating paradigm emulated the clinical situation
closely, because clinical situations often demand binary
decisions about the presence or state of an abnormality.
Most other competing methods, such as receiver operating
characteristic analysis, are based on confidence ratings
and therefore differ from clinical paradigm.

Clinical interpretations of mammograms require deci-
sions that are almost entirely binary in nature. In each
clinical mammogram interpretation, radiologists include a
final assessment category from the Breast Imaging Re-
porting and Data System (BI-RADS) which is a 7-point
scale from 0 to 6 (30). Although the BI-RADS final as-
sessment category provides different levels of confidence
for the presence of breast cancer, only specific categories
can be used in different settings, making the decisions
largely binary. For example, when interpreting screening
mammograms, the interpreting physician determines
whether the mammogram warrants further evaluation (BI-
RADS category 0) or does not (BI-RADS category 1
or 2). Categories 3–6 are rarely used in the screening
setting. In the diagnostic setting, after all mammogram
and ultrasound images have been reviewed, the decision
is again largely binary based on whether the lesion in
question warrants a biopsy (category 4 or 5) or is it defin-
itively benign (category 1 or 2) based on imaging alone.
Whether a lesion’s BI-RADS final assessment is category
4 or category 5 has no impact on the ultimate recommen-
dation to biopsy the lesion, because virtually all such le-
sions will undergo tissue sampling. Although a lesion
could also be interpreted as BI-RADS 3, probably benign,
in the diagnostic setting, this category is infrequently em-
ployed when used as intended by the BI-RADS manual
(30). In a recent study by Kerlikowske et al, 1.6% of pa-
tients undergoing their first screening mammograms and
only 0.7% of subsequent screening exams were assigned
BI-RADS final assessment category 3 after an appropriate
diagnostic evaluation (31). Therefore, the clinical decision
in breast imaging can be summarized as answering the
binary question “further evaluation needed or not” for a
screening exam or “biopsy recommended or not” for a
diagnostic study.

This study faced certain limitations. First, the lesion
contrast was calculated for an average breast (50% glan-
dular/50% adipose tissue). This was an approximation,
because the mammogram database contained images of
breasts with various compositions. Second, all mammo-
grams for this study were acquired on an indirect flat-

panel detector. Mammograms obtained on other digital
detectors might appear slightly different on the LCD or
CRT displays. Third, the radiologists knew whether they
were using an LCD or CRT, adding a potential source of
bias to the experiment. Fourth, this study only used spe-
cific, though typical, LCD and CRT displays. Other dis-
play devices may offer slightly different performance.
Fifth, we used simulated breast masses and microcalcifi-
cations to create abnormal mammograms. Although
breast-imaging radiologists had previously confirmed the
realism of our simulated lesions (16–18), simulated le-
sions may not represent all of the natural variability of
breast lesions. This highlights the importance of a ran-
domized clinical trial to confirm the clinical performance
of each display device. Finally, we displayed all images
at full resolution on each display. Some display worksta-
tions may use an alternative display protocol in which the
images are not displayed at full resolution. Images dis-
played at reduced or enlarged sizes will experience blur-
ring from the display and by the interpolation algorithm
used by the display card and display software. This may
result in slightly different performance for the radiologists
in those clinical settings. Notwithstanding these limita-
tions, we believe that the study provides a reasonable
evaluation of the effects of current display technologies
on mammographic task performances.

In summary, this work explored the impact of different
soft-copy displays on common mammographic tasks. By
using simulated masses and microcalcifications, the study
controlled for contrast, size, and breast background. The
results indicate that CRTs and LCDs yield similar perfor-
mance, even though observer dependent performance
trends cannot be ruled out. Although the resolution of
the two displays differs markedly, it appears that resolu-
tion may be only one of many factors impacting the
clinical utility of a display. These results are particularly
relevant for radiology practices evaluating the costs and
benefits of different display systems for clinical breast
imaging.

REFERENCES

1. Pisano ED, Gatsonis C, Hendrick E, et al. Diagnostic performance of
digital versus film mammography for breast-cancer screening. N Engl
J Med 2005; 353:1773–1783.

2. Saunders RS, Samei E. Resolution and noise measurements of five
CRT and LCD medical displays. Med Phys 2006; 33:308–319.

3. Saunders RS Jr, Samei E, Jesneck JL, et al. Physical characterization
of a prototype selenium-based full field digital mammography detector.
Med Phys 2005; 32:588–599.

4. Fan J, Dallas WJ, Roehrig H, et al. Improving visualization of digital
mammograms on the CRT display system. Proc SPIE 2003; 5029:746–

753.

1325



SAUNDERS ET AL Academic Radiology, Vol 13, No 11, November 2006
5. Mertelmeier T. Why and how is soft copy reading possible in clinical
practice? J Dig Imaging 1999; 12:3–11.

6. Muka E, Blume HR, Daly SJ. Display of medical images on CRT soft-
copy displays: a tutorial. Proc SPIE 1995; 2431:341–359.

7. Compton KD. Factors affecting CRT display performance: specifying
what works. Proc SPIE 2000; 3976:412–423.

8. Samei E, Flynn MJ. A method for in-field evaluation of the modulation
transfer function of electronic display devices. Proc SPIE 2001; 4319:
599–607.

9. Blume HR, Steven PM, Cobb ME, et al. Characterization of high-reso-
lution liquid crystal displays for medical images. Proc SPIE 2002; 4681:
271–292.

10. Badano A, Gagne RM, Jennings RJ, et al. Noise in flat-panel displays
with subpixel structure. Med Phys 2004; 31:715–723.

11. Samei E, Wright SL. Luminance and contrast performance of liquid
crystal displays for mammographic applications. Technol Cancer Res
Treatment 2004; 3:429–436.

12. NEMA. Digital Imaging and Communications in Medicine (DICOM) Part
14: grayscale display standard function. Rosslyn, Va: National Electrical
Manufacturers Association, 2000.

13. Samei E, Badano A, Chakraborty D, et al. Assessment of display per-
formance for medical imaging systems: executive summary of AAPM
TG18 report. Med Phys 2005; 32:1205–1225.

14. Suryanarayanan S, Karellas A, Vedantham S. Physical characteristics
of a full-field digital mammography system. Nucl Instrum Methods
2004; 533:560–570.

15. Vedantham S, Karellas A, Suryanarayanan S, et al. Full breast digital
mammography with an amorphous silicon-based flat panel detector:
physical characteristics of a clinical prototype. Med Phys 2000;
27:558–567.

16. Saunders RS Jr, Samei E, Baker JA. Simulation of breast lesions. In:
7th International Workshop on Digital Mammography. Durham, NC,
2004; 162–169.

17. Saunders RS, Samei E. Characterization of breast masses for simula-
tion purposes. Proc SPIE 2004; 5372:242–250.
18. Saunders RS Jr, Samei E, Baker JA, et al. Simulation of mammo-
graphic lesions. Acad Radiol 2006; 13:860–870.

1326
19. Samei E, Flynn MJ. An experimental comparison of detector perfor-
mance for direct and indirect digital radiography systems. Med Phys
2003; 30:608–622.

20. Boone JM, Lindfors KK, Cooper VN 3rd, et al. Scatter/primary in
mammography: comprehensive results. Med Phys 2000;
27:2408–2416.

21. Stahl M, Aach T, Dippel S. Digital radiography enhancement by nonlin-
ear multiscale processing. Med Phys 2000; 27:56–65.

22. Davies AG, Cowen AR, Parkin GJS, et al. Optimizing the processing
and presentation of PPCR imaging. Proc SPIE 1996; 2712:189–195.

23. Krupinski EA, Johnson J, Roehrig H, et al. On-axis and off-axis viewing
of images on CRT displays and LCDs: observer performance and vi-
sion model predictions. Acad Radiol 2005; 12:957–964.

24. Efron B, Tibshirani R. An introduction to the bootstrap. New York:
Chapman & Hall, 1993.

25. Heiberger RM, Holland B. Statistical analysis and data display: an in-
termediate course with examples in S-plus, R, and SAS. New York:
Springer, 2004.

26. Hwang SA, Seo JB, Choi BK, et al. Liquid-crystal display monitors and
cathode-ray tube monitors: a comparison of observer performance in
the detection of small solitary pulmonary nodules. Korean J Radiol
2003; 4:153–156.

27. Oschatz E, Prokop M, Scharitzer M, et al. Comparison of liquid crystal
versus cathode ray tube display for the detection of simulated chest
lesions. Eur Radiol 2005; 15:1472–1476.

28. Scharitzer M, Prokop M, Weber M, et al. Detectability of catheters on
bedside chest radiographs: comparison between liquid crystal display
and high-resolution cathode-ray tube monitors. Radiology 2005; 234:
611–616.

29. Krupinski EA, Johnson J, Roehrig H, et al. Use of a human visual sys-
tem model to predict observer performance with CRT vs LCD display
of images. J Dig Imaging 2004; 17:258–263.

30. D’Orsi C. Illustrated Breast Imaging Reporting and Data System (BI-
RADS). Reston, Va: American College of Radiology, 1998.

31. Kerlikowske K, Smith-Bindman R, Abraham LA, et al. Breast cancer

yield for screening mammographic examinations with recommendation
for short-interval follow-up. Radiology 2005; 234:684–692.



Simulation of Mammographic Lesions1

Robert Saunders, Ehsan Samei, Jay Baker, David Delong

Rationale and Objectives. This study presents a method for generating breast masses and microcalcifications in mam-
mography via simulation. This simulation method allows for the creation of large image datasets with particular lesions,
which may serve as a useful tool for perception studies measuring imaging system performance.

Materials and Methods. The study first characterized the radiographic appearance of both masses and microcalcifications,
examining the following five properties: contrast, edge gradient profile of masses, edge characteristics of masses, shapes
of individual microcalcifications, and shapes of microcalcification distributions. The characterization results then guided
the development of routines that created simulated masses and microcalcifications. The quality of the simulations was ver-
ified by experienced breast imaging radiologists who evaluated simulated and real lesions and rated whether a given lesion
had a realistic appearance.

Results. The radiologists rated real and simulated lesions to have similarly realistic appearances. Using receiver operating
characteristic analysis to characterize the degree of similarity, the results showed an Az of 0.68 � 0.07 for benign masses,
0.65 � 0.07 for malignant masses, and 0.62 � 0.07 for microcalcifications, thus showing notable overlap in the simulated
and real lesion ratings.

Conclusion. This research introduced a new approach for simulating breast masses and microcalcifications that relied on
anatomic characteristics measured from real lesions. Results from an observer performance experiment indicate that our
simulation routine produced realistic simulations of masses and microcalcifications as judged by expert radiologists.

Key Words. Simulation; mammography; lesion modeling; observer performance.
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Several studies have advocated evaluating an imaging
system using task-based diagnostic approaches (1–5).
These approaches, instead of relying on the measurement
of image quality solely based on physical metrics, exam-
ine how well a physician performs a clinical task using
images from a given imaging system. For mammography,
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the performance of a system is measured based on how
well it aids the clinician in detecting breast cancer. Mea-
suring cancer detection generally involves human ob-
server performance experiments, in which an observer
reads a large number of cases, rating each image based
on whether it appears to contain a lesion. Such experi-
ments rely on the availability of a large number of images
with a particular lesion class, the presence of which
should be confirmed independently. Given the extremely
small percentage of cancer cases in the mammography
screening population (6), obtaining a large enough data-
base of images with confirmed lesions is no trivial task.
Simulation techniques thus present an attractive alterna-
tive for investigating lesion detection and classification
questions because they allow one to easily form large
databases and to investigate large numbers of influencing

variables more efficiently.
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The current state of the art in simulating breast lesions
is relatively limited. Previous investigations have mostly
used Gaussian profiles, disks, or simulated lung nodule
profiles (7–12) to simulate masses. These prior geometric
models are generally overly simplistic to provide an ade-
quately complex representation of real breast masses,
which exhibit notable variations from patient to patient in
terms of border characteristics, shape, and contrast profile.
More realistic approaches have been used to simulate mi-
crocalcifications (13–16). However, those methods have
mostly relied on templates formed from actual cases, lim-
iting the number of simulations available.

In this study, we developed a new technique to simu-
late mammographic lesions. First, we measured the physi-
cal characteristics of breast masses and microcalcifications
in mammographic images. These characteristics guided
the development of simulation routines capable of creat-
ing breast lesions with realistic and variable appearance.
The lesion appearance was finally validated by experi-
enced breast imaging radiologists.

MATERIALS AND METHODS

Lesion Characterization

Characterization of breast masses.—From descriptors
in the Breast Imaging Reporting and Data System
(BI-RADS) lexicon, four common categories of breast
masses were chosen (17). Those categories included two
types of typically benign masses (oval circumscribed and
oval obscured masses) and two types of typically malig-
nant masses (irregular ill-defined and irregular spiculated).
A total of 152 mammograms, each containing a mass de-
scribed by the one of the above four categories, were
drawn from the University of South Florida’s Digital Da-
tabase for Screening Mammography (DDSM) (18). The
mammograms were segmented into 2.56 cm � 2.56 cm
regions of interest (ROIs) surrounding the mass. For each
ROI, the original optical density values were determined
using the measured characteristic curve of the scanner
reported on the DDSM web site. Each ROI was then ana-
lyzed to determine the properties of the masses.

The masses were characterized using a three-stage pro-
cess: 1) segmenting the mass from the surrounding anat-
omy, 2) examining the mass contrast profile in terms of
an edge gradient profile, and 3) measuring the edge prop-
erties in terms of a border deviation profile. The follow-
ing outlines the steps for each stage in the characteriza-

tion process. In the first stage, the masses were segmented
from the surrounding anatomy using a Laplacian of
Gaussian edge detection method (19). Each segmentation
was visually inspected to ensure that it covered the whole
mass. The edge outlines were used to create a mask for
each mass, which was then fit with an ellipse to deter-
mine the major axis length, b0; the ratio of the minor to
major axis length, c; center location (x0, y0); and the ori-
entation angle between the major axis and x-axis, �.

In the second stage, the mass contrast profile was mea-
sured using an edge gradient profile, formed by averaging
pixel values along elliptical rings with the same center,
orientation angle, and minor to major axis length ratio as
measured earlier (Fig 1a). The edge gradient profile con-
tained minimal contribution from background anatomy, as
the background anatomy generally did not exhibit ellipti-
cal symmetry and therefore averaged to zero along a ring.
The edge gradient profile was then fit with a modified
sigmoid curve as

f(x) � yo � (��b0 x � �)�1 �
1

1 � e�(x��b0) ⁄ (�b0)� , (1.1)

where x represents the major axis of the elliptical rings
and other parameters are defined in Table 1. The edge
gradient profile fit parameters for each mass type were
averaged across individual masses to obtain average le-
sion behavior and further minimize any contribution from
background anatomy.

Although the edge gradient profile captured the con-
trast profile of the mass over its transition from the lesion
to the background, it assumed that the mass possessed
perfect elliptical symmetry. A real mass would have devi-
ations from an ellipse, as shown in Fig 1b. To capture
these features, in the third stage, the relative deviation of
the mass mask from its corresponding best-fit ellipse was
recorded in a border deviation profile. The border devia-
tion profile resembled a random variate with random
phase and was thus summarized by its variance and nor-
malized power spectrum. The variance and power spec-
trum were averaged over all masses of a certain type to
establish average lesion behavior.

Figures 2a and 3a show typical edge gradient profiles
for benign and malignant masses, respectively. Edge gra-
dient profiles for most benign masses could be character-
ized by a distinct mass region followed by a sharp transi-
tion to background. Malignant mass profiles differed by
exhibiting a more gradual transition to background. This

difference between benign and malignant masses was
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seen in the average profile parameters, listed in Table 1,
where the parameter � indicated the sharpness (slope) of
the transition to background, with smaller values signify-
ing sharper transitions. The benign masses had an average
� that was approximately half of the average value for
malignant masses, indicating benign masses had more
distinct borders compared with malignant masses.

Figures 2b and 3b illustrate typical border deviation
profiles for benign and malignant masses, respectively.
Figures 2c and 3c demonstrate the power spectra from
these profiles. Overall, malignant masses showed more
deviation from a perfect ellipse than benign masses. This
was consistent with the expected behavior of the malig-
nant mass categories as having irregular shapes, whereas
the benign mass categories are generally referred to hav-
ing an oval shape.

Characterization of microcalcifications.—Using de-
scriptors in the BI-RADS lexicon, two common catego-
ries of microcalcifications were studied, fine linear
branching and clustered pleomorphic, both representing
typically malignant lesions. To study the characteristics of
these lesions, 94 mammograms with these types of micro-

Figure 1. Mass characterization procedure. Illustration of con-
centric elliptical rings used for the formation of the edge gradient
trace with the major axis b of the ellipses clearly marked (a) and
example of border deviation profile (b), which indicates how a
mass border differs from a perfect ellipse.
calcifications were drawn from the DDSM. The mammo-
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grams were then segmented into 2.56 cm � 2.56 cm
ROIs containing the microcalcification distributions. The
ROI pixel values were converted to optical density using
the characteristic curve of the scanner. Each ROI was
then analyzed to determine the properties of the
microcalcifications.

The characteristics of the microcalcifications were
evaluated in a three-stage process: 1) segmenting the mi-
crocalcifications from the mammogram, 2) measuring the
properties of individual microcalcifications, and 3) exam-
ining the microcalcification distribution. In the first stage,
the lesions were segmented from the background anatomy
by thresholding and then manually inspected to ensure all
individual microcalcifications were included. In the sec-
ond stage, individual microcalcification properties were
measured from this mask including the major axis length,
the minor axis length, and the average contrast. In the
third stage, the distribution of individual microcalcifica-
tions was determined for clustered pleomorphic and fine
linear branching cases. For clustered pleomorphic micro-
calcifications, the microcalcifications were found to be
distributed relatively uniformly within an elliptical area
characterized by a major axis and a minor axis for the
cluster. The major and minor axis lengths of the cluster
were thus recorded. For fine linear branching cases, the
microcalcifications were distributed along lines and
branches according to the underlying duct structure.
Therefore, the distribution properties were characterized
in terms of the length of these lines and the angular
separation between the lines and branches. Table 2
summarizes the results of the microcalcification charac-
terization.

Lesion Simulation

Mass simulation.—A simulation routine was developed
to emulate benign and malignant masses with properties
similar to the four chosen categories (benign: oval cir-
cumscribed and oval obscured; malignant: irregular ill-
defined and irregular spiculated). The mass simulation
routine was based on the measured mass characteristics
described in the previous section. Using these properties,
the simulation routine, as illustrated in Fig 4, consisted of
three stages: 1) creation of an array with elliptical rings
radiating out from the center; 2) modification of the initial
array to produce the proper border shapes; and 3) conver-
sion of the modified elliptical array into pixel values us-
ing the edge gradient profile function.

The first stage of the simulation created two arrays

that established the elliptical behavior of the masses.
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The first array created elliptical rings in which each
element in the ring was set equal to the ellipse’s major
axis value as

Bxy ��� 1

c2��Cos [�](x � x0) � Sin [�](y � y0)�2

��Sin [�](x � x0) � Cos ��](y � y0)�2

, (1.2)

where � describes the orientation of the ellipse, c refers
to the ratio of minor axis to major axis, and (x0, y0)
correspond to the center of the ellipse. The second array
set each element equal to its angle along the elliptical
ring as

	xy � ArcTan �c((y � y0) Cos [�] � (x � x0) Sin [�])

(x � x0) Cos [�] � (y � y0) Sin [�] � , (1.3)

with similar parameters as before. For both arrays, the
simulation parameters for mass orientation, �, and minor
axis to major axis ratio, c, were chosen to match mea-
surements from real lesions.

The second stage of mass simulation established the
correct border behavior. To begin, the border was repre-
sented as a one-dimensional array of Gaussian random
noise, 
(�). The noise was then transformed by a fast-
Fourier transform and filtered by the measured normalized
power spectrum corresponding to the type of mass being
simulated. This filtered spectrum was then transformed
back to the spatial domain and scaled by the variance of
the border deviation profile corresponding to the type of
mass being simulated. The deviation profile, 
(�), was
applied to the elliptical array, Bxy, in a multiplicative
fashion as

Table 1
Average Parameter Values for the Elliptical Trace for Both Ben

Parameter Symbol Benign Les

Mean background signal y0

Contrast profile in mass region � �7.3
Mass contrast �

Edge location �

Sharpness of edge transition �

Mass size b 5.0

The parameter values were determined by fitting the measured e
determines the sharpness of the mass border, with smaller values
Bxy
′ � Bxy · (1 � 
(	xy)). (1.4)
In the final stage, the elliptical array was converted to
pixel values using the measured edge gradient profile.
The simulated mass was then subtracted from a normal
mammographic background, N, to produce an output im-
age, O, as

Oxy � Nxy � C · E(Bxy
′ ), (1.5)

where E represents the normalized edge gradient profile
and C corresponds to the lesion contrast.

The contrast of a mass is an important parameter de-
fining its appearance. Because our study was primarily
based on screen-film images, the mass contrast was deter-
mined by examining the contrast of comparably size
masses imaged with identical x-ray tubes and embedded
in similarly sized breasts to take into account the nonlin-
ear characteristic curve of such systems. For implementa-
tion of our routines for digital systems, a different ap-
proach can be taken based on modeling the contrast of a
homogenous breast mass, accounting for breast thickness,
beam energy, anode target, tube filtration, detector mate-
rial, and scatter (20,21).

Microcalcification simulation.—A microcalcification
simulation routine, summarized in Fig 5, was developed
to create simulated microcalcifications based on the clus-
tered pleomorphic and fine linear branching categories.
First, this procedure established the microcalcification
distribution for clustered pleomorphic and fine linear
branching categories. For the clustered pleomorphic case,
the microcalcifications were distributed with uniform
probability inside an ellipse with major and minor axis
lengths as calculated from real cases. Conversely, for the
fine linear branching case, the microcalcifications were
distributed along lines and branches with lengths and an-

nd Malignant Masses

verage Parameters Malignant Lesion Average Parameters

8 � 0.38 1.63 � 0.21
6 � 1.80E-05 4.67E-05 � 8.91E-05
6 � 0.09 0.48 � 0.17
0 � 0.03 0.49 � 0.21
2 � 0.018 0.22 � 0.12

� 1.60 mm 5.05 mm � 1.68 mm

gradient trace to the curve from Equation 1.1. The parameter �
ating a sharper border.
ign a

ion A

1.5
9E-0

0.2
0.9

0.09
9 mm

dge
gular separations measured from real cases. After deter-
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Figure 2. Characterization results for a typical benign mass: its
edge gradient profile (a), border deviation profile (b), and the

power spectrum of the border deviation profile (c).

864
Figure 3. Characterization results for a typical malignant mass:
its edge gradient profile (a), border deviation profile (b), and the

power spectrum of the border deviation profile (c).
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mining the distribution, the procedure created individual
microcalcifications by drawing a line through the micro-
calcification center at a random angle. The length of this
line equaled the major axis length of the individual mi-
crocalcifications as calculated from actual microcalcifica-
tion cases. This line was modified by a morphologic
thickening and eroding operation to create realistic edges
for individual microcalcifications. Once created, the simu-
lated microcalcifications were then added to a normal
background with a given contrast. The exact contrast val-
ues were estimated using a procedure similar to that used
for masses noted previously.

Observer Performance Experiment
The simulation routine was considered effective if a

breast imaging radiologist would judge simulated lesions
to have a similarly realistic appearance to that of real

Figure 4. Flow chart of mass simulation procedure. The proce-
dure first created elliptical rings radiating outward. The border of
each ellipse was modified according to the measured border de-
viation profile. The simulated mass image was formed by trans-
forming these elliptical rings according to the overall edge
gradient.

Table 2
Summary of Microcalcification Characterization
Results, Including Properties of the Distribution
and Individual Microcalcifications

Individual Pleomorphic
Fine Linear
Branching

Microcalcifications
Major axis (mm) 0.47 � 0.11 0.43 �0.13
Minor axis (mm) 0.29 � 0.06 0.26 � 0.05
Contrast 0.22 � 0.13 0.34 � 0.16

Distribution
Major axis (mm) 8.0 � 3.5 NA
Minor axis (mm) 7.1 � 3.2 NA
Line length (mm) NA 6.2 � 2.3
Angle (degrees) NA 50.8 � 11.2
ones. To test this hypothesis, an observer performance
experiment was conducted using 200 images containing
approximately equal numbers of simulated benign masses,
real benign masses, simulated malignant masses, real ma-
lignant masses, simulated microcalcifications, and real
microcalcifications. Simulated benign masses ranged in
size from 4.5 mm to 7 mm, whereas simulated malignant
masses had a diameter of 5 mm to 7 mm at their largest
extent, and individual microcalcifications measured
250 �m and were located inside distributions measuring
5 mm to 8 mm. The images were viewed on a soft-copy
display using a custom graphical user interface. To mini-
mize the effects of display blur, the images were dis-
played with one image pixel for each display pixel. Three
experienced radiologists, with an average of 8 years of
breast imaging experience, rated the images on a 100-
point scale, where 0 represented “definitely simulated”
appearance and 100 represented “definitely real” appear-
ance. The rating experiment placed no constraints on
viewing time and the radiologists were allowed to win-
dow and level the images as desired. The rating experi-
ment was conducted in a darkened room on a mammo-
graphic quality monitor (Barco MGD521, p45 phosphor;
BarcoView, LLC; Duluth, GA) calibrated to the DICOM
Grayscale Display Function and TG18 standards (22,23).

The rating scores were analyzed using four different
methods. The first method compared the ratings for real
and simulated lesions qualitatively. Box plots were used
to show the similarity in rating distributions for each le-
sion class and for each observer. Next, the ratings for
each image were averaged across observers to find the
behavior of the average observer. The average observer’s
rating distributions were then analyzed in two ways to
compare whether the centers of the distributions were
different for real and simulated lesions and whether the
width of the distributions were different. The difference
in the centers of the real and simulated rating distribu-
tions was evaluated via a Wilcoxon test, using the normal
approximation to find a P value for statistical significance
(24) for the second analysis method. For the third, the
widths of the distributions were compared using a Brown-
Forsythe test (24). Fourth, because a difference may be
statistically significant but not practically significant, the
data were further analyzed to quantify the degree of over-
lap between the ratings for real and simulated lesions.
This was accomplished using receiver operating character-
istic (ROC) analysis. The ROC curves were generated by
ROCKIT software (C. Metz, University of Chicago),
which also computed the area under the ROC curves, Az
(25). Az equals 1.0 in a detection experiment when all
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lesions are detected and equals 0.5 when the observer has
chance detection. In contrast to detection experiments, in
this analysis, Az would equal 1.0 when the real and simu-
lated lesions are rated completely differently and 0.5
when real and simulated lesions were rated in exactly the
same manner.

RESULTS

Figure 6 shows several examples of simulated benign
masses embedded in different mammographic back-
grounds. For comparison, real lesions are also shown in
this figure. As evident in the figure, the real and simu-
lated lesions share many visual characteristics, as desired.
In an analogous fashion, Fig 7 illustrates simulated and
real malignant masses in various mammographic back-
grounds. Again, the real and simulated masses have simi-
lar radiographic appearances. Figure 8 illustrates exam-
ples of simulated microcalcification clusters. For compari-
son, typical real lesions of the same type are also shown.
As with masses, the real and simulated lesions possess
similar appearances.

Figure 9 illustrates the observer scores for each lesion
class. Most notably, the observers gave both real and sim-
ulated masses high realism scores. In addition, the observ-
ers generally rated simulated lesions similarly to real lesions.
The one exception to that observation was Observer 2,
who rated real and simulated benign masses slightly dif-
ferently. However, even for that observer, the simulated
benign masses received a high realism score. For malig-
nant masses and microcalcifications, this observer’s real
and simulated ratings overlapped considerably. Figure 10
shows box plots of the rating distributions for the average
observer. The benign mass distributions for the average

Figure 5. Flow chart of microcalcification simulation procedure.
The routine first established the microcalcification distribution,
then drew the individual microcalcifications, and finally added the
simulated lesion to a normal background with a given contrast.
observer had a statistically significant difference between

866
real and simulated lesions (Wilcoxon’s z � –2.77, P �
.0055), whereas malignant masses and microcalcifications
did not exhibit statistically significant differences between
real and simulated cases (Wilcoxon’s z � –1.60, P � .11;
Wilcoxon’s z � 1.89, P � .059, respectively). The realism
ratings had similar variances for real and simulated lesions
within each lesion class (benign masses: Brown-Forsythe
F � 2.37, P � .13; malignant masses: Brown-Forsythe F �
0.96, P � .33; microcalcifications: Brown-Forsythe F �
2.33, P � .13). Because a statistically significant differ-
ence does not indicate a practically significant difference,
as noted in the Methods section, the data were further
analyzed using ROC analysis to quantify the degree of

Figure 6. Examples of benign simulated masses embedded in a
normal background (left). The figure includes real masses for
comparison purposes (right).
overlap between real and simulated lesion ratings. All
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lesions have Az values approaching 0.5, as shown in
Table 3, indicating the observers rated simulated lesions
to have a similarly realistic appearance to real lesions.
In addition, Table 3 shows the absolute difference
between real and simulated lesion ratings for each
lesion class.

DISCUSSION

The effectiveness of an imaging system lies in its abil-
ity to aid in clinical tasks. Because many diagnostic tasks
involve detecting lesions, lesion detection experiments are

Figure 7. Examples of malignant simulated masses embedded
in a normal background (left). The figure includes real masses for
comparison purposes (right).
often used to assess the performance of imaging systems.
However, these studies are often hindered by the limited
number of clinical cases available. This work sought to
remedy this problem in mammographic imaging by intro-
ducing a new means of simulating breast masses and mi-
crocalcifications, enabling the creation of a large number of
realistic lesions for detection and discrimination studies.

Most prior attempts at simulating breast masses have
used relatively simple approaches. Some prior approaches
have relied on Gaussians, blurred discs, or simulated lung
nodules to emulate masses (7–12). These simple symmet-
rical models, however, do not adequately replicate the
asymmetrical, complex, and variable appearance of mam-
mographic masses. Another prior approach has been
based on templates from masses digitally excised from

Figure 8. Example simulated microcalcifications (left) along with
real lesions (right) for comparison purposes.
images (26 –29). Although this approach can provide ade-
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quate complexity, cases are limited to a handful of lesion
templates. This limitation presents a serious problem for
investigations that need hundreds or thousands of images
for observer or modeling experiments. In addition, this
approach does not allow for the control of mass size,
which is an important parameter in lesion detectability
experiments. A different prior approach has used an an-
thropomorphic breast phantom to simulate the parenchy-
mal anatomy and lesions (30). This approach was also
limited in its ability to generate adequate variability in

Figure 9. Observer results for benign masses (a), malignant mas
a line within the box, with the top and bottom edges of the box sh
whiskers show the range of the scores (excluding any outliers in t
erally rated to have a similar appearance to real cases.
mass cases for lesion detectability experiments. To over-

868
come many of the limitations presented by prior ap-
proaches, our technique uses measurements from actual
mammographic masses to generate simulated masses with
a realistic appearance. The appearance of the simulated
masses is varied by the routines, enabling the generation
of large datasets.

Efforts have also been made to simulate microcalcifi-
cations. As with masses, one common prior approach has
been the use of blurred discs (10). This geometric model
does not capture the complexity of real microcalcifica-

b), and microcalcifications (c). The box plots mark the median as
g the 25th and 75th percentile, respectively. The top and bottom
ta). For all three lesion classes, the simulated lesions were gen-
ses (
owin

he da
tions. Other prior approaches have been based on micro-
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calcification templates digitally removed from actual
mammograms (13,14). Again, this template method re-
mains limited by the number of segmented templates
available. Another prior approach has been the automatic
creation of distributions of microcalcifications, while rely-
ing on real templates for individual microcalcifications
(15,16). That approach has been restricted to clustered
distributions and offers a limited number of templates for
individual microcalcifications (15,16). Another prior ap-
proach has posited a novel way to make individual micro-
calcifications, but has not included means to generate a
distribution (27). Yet another promising method has used
three-dimensional models of microcalcifications, which
does not easily extend to existing databases of two-di-
mensional mammograms (31). To address the limitations

Figure 10. Average observer results for benign masses, malig-
nant masses, and microcalcifications. The box plots show the
similarity in realism scores between real and simulated lesions.

Table 3
Summary Statistics for Average Observer

Difference in
Mean Realism Scores

(100-point scale) Az

Benign masses 6.0 � 2.2 0.68 � 0.07
Malignant masses 3.9 � 2.1 0.65 � 0.07
Microcalcifications 1.5 � 1.3 0.62 � 0.07

The first data column shows the difference between real and
simulated realism scores for benign masses, malignant masses,
and microcalcifications. The second column quantifies the overlap
in realism scores between real and simulated lesions using re-
ceiver operator characteristic analysis.
of previous methods, our technique relies on the measured
characteristics of real microcalcifications and can generate
large numbers of lesions with variable appearance. The cur-
rent method does not rely on existing templates, allowing for
a greater number of images with simulated microcalcifica-
tions with either clustered or linear distributions.

This study formed lesion models based on mammo-
grams drawn from the publicly accessible DDSM, which
relied on digitized versions of screen-film mammograms.
As digital mammography has gained momentum, it could
be advantageous to base a lesion-simulation model on
digital mammograms. However, at the time of this study,
there were not any publicly accessible databases of digital
mammograms comparable to the DDSM. The DDSM car-
ries several advantages as well; it contains mammograms
with many different lesion types, ranging from benign to
malignant masses and multiple types of microcalcifications.
The resolution of screen-film systems was high and captured
accurate images of the breast anatomy. In terms of contrast,
we relied on values based on physical properties that elimi-
nate the impact of film gamma on the lesion contrast. There-
fore, although this model is based on film-screen mammo-
grams, it should easily translate to digital mammography.

In this study, we used a ROC methodology to address
the quality of the simulated lesions. Another way to ver-
ify the realism of the simulated lesions would be a 2-Al-
ternative Forced Choice (2AFC) experiment. However, a
2AFC experiment addresses a slightly different question
than the one explored by this study, namely the discrim-
inability of real versus simulated lesions as opposed to
assessing the realistic appearance of simulated lesions.
Although powerful, a 2AFC experiment can potentially
rely on irrelevant details about the simulated lesions to
discriminate real from simulated cases. For example, the
observer might discern that simulated benign masses have
similar shapes, whereas real benign masses have greater
shape variability. The observer will likely be able to better
discriminate between real and simulated benign masses in
this scenario in a 2AFC experiment. In the ROC paradigm,
the observer will rate each lesion based on the realism of its
appearance and not trivial details. Because this study was
more concerned with the realistic appearance of the simu-
lated lesions, we chose ROC methodology.

Although flexible and accurate, our simulation routines
present some limitations: one concerned the lesion categories
studied by the simulation routines. Although this study char-
acterized a number of masses labeled by four relevant BI-
RADS descriptors, the natural variability of masses is much
larger. This same limitation was present with our microcalci-

fication simulation routine. Another limitation concerned the
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central location of lesions and the limited sized ROIs used to
verify the realism of the lesion appearance. To extend the
routines to a full mammogram, the lesions would need to be
manually placed within the mammogram, similarly to previ-
ous work (15). Next, the mass characterization assumed a
degree of elliptical symmetry in the masses. The character-
ization procedure would have more difficulty characterizing
highly asymmetric masses. However, visual inspection of the
characterized masses, even those labeled as having ill-de-
fined borders, showed that all possessed substantial elliptical
symmetry and could be characterized using our procedure.
Finally, the mass model did not include the effects of mass
growth. As a mass grows, it will displace the surrounding
parenchymal tissue, a process that was not taken into ac-
count in the present work. Notwithstanding these limitations,
however, the models produced realistic lesions as judged by
experienced mammographers. Future work may address
these limitations and extend the complexity of the models.

CONCLUSION

This work comprehensively measured the characteristics
of common categories of benign and malignant masses and
microcalcifications. The characterization measurements then
directed the development of routines that could simulate the
radiographic appearance of breast lesions. The simulation
routines developed in this study produced masses and micro-
calcifications with greater complexity than existing simula-
tion routines. In addition, observer performance experiments
with experienced mammographers validated the realistic ap-
pearance of the simulated lesions.
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The performance of soft-copy displays plays a significant role in the overall image quality of a
digital radiographic system. In this work, we discuss methods to characterize the resolution and
noise of both cathode ray tube �CRT� and liquid crystal display �LCD� devices. We measured the
image quality of five different commercial display devices, representing both CRT and LCD tech-
nologies, using a high-quality charge-coupled device �CCD� camera. The modulation transfer func-
tion �MTF� was calculated using the line technique, correcting for the MTF of the CCD camera and
the display pixel size. The normalized noise power spectrum �NPS� was computed from two-
dimensional Fourier analysis of uniform images. To separate the effects of pixel structure from
interpixel luminance variations, we created structure-free images by eliminating the pixel structures
of the display device. The NPS was then computed from these structure-free images to isolate
interpixel luminance variations. We found that the MTF of LCDs remained close to the theoretical
limit dictated by their inherent pixel size �0.85±0.08 at Nyquist frequency�, in contrast to the MTF
for the two CRT displays, which dropped to 0.15±0.08 at the Nyquist frequency. However, the NPS
of LCDs showed significant peaks due to the subpixel structure, while the NPS of CRT displays
exhibited a nearly flat power spectrum. After removing the pixel structure, the structured noise
peaks for LCDs were eliminated and the overall noise magnitude was significantly reduced. The
average total noise-to-signal ratio for CRT displays was 6.55% ±0.59%, of which 6.03% ±0.24%
was due to interpixel luminance variations, while LCD displays had total noise to signal ratios of
46.1% ±5.1% of which 1.50% ±0.41% were due to interpixel luminance variations. Depending on
the extent of the blurring and prewhitening processes of the human visual system, the magnitude of
the display noise �including pixel structure� potentially perceived by the observer was reduced to
0.43% ±0.01% �accounting for blurring only� and 0.40±0.01% �accounting for blurring and pre-
whitening� for CRTs, and 1.02% ±0.22% �accounting for blurring only� and 0.36% ±0.08% �ac-
counting for blurring and prewhitening� for LCDs. © 2006 American Association of Physicists in
Medicine. �DOI: 10.1118/1.2150777�

Key words: Image quality, Medical Display, Modulation Transfer Function, Normalized Noise
Power Spectrum, Liquid Crystal Display, Cathode Ray Tube
I. INTRODUCTION

For many years, radiographic images were acquired with
screen-film systems. A screen-film system bundled detection,
image processing, and image display into one device. The
advent of digital systems separated these functions into dis-
tinct components that could be independently optimized.1

The image quality of a digital x-ray system, therefore, does
not solely depend on the detector, but also on all components
of the imaging chain, including the display device utilized.2

In order to form a complete picture of a system’s image
quality, one must thoroughly measure the physical character-
istics of the display device utilized.

Currently, medical displays rely on two underlying tech-
nologies. Based on an older technology, cathode ray tube
�CRT� displays use a focused electron beam striking upon a

3
phosphor to create an image. In contrast, liquid crystal dis-

308 Med. Phys. 33 „2…, February 2006 0094-2405/2006/33„
play �LCD� devices control the light output from individual
pixels with liquid crystals and polarizing filters.3 The resolu-
tion and noise of these display types are governed by differ-
ent physical processes. The resolution of a CRT display de-
pends on the extent and control of the electron beam. The
monitor yields lower resolution at higher luminance levels
and at the display peripheries, as the electron beam spreads
at these luminance levels and beam projections.4,5 Further-
more, the resolution of a CRT systematically degrades with
age due to deterioration of the electron gun and a necessary
increase in electron beam intensity because of a loss of phos-
phor luminance efficiency.6,7 In contrast, LCDs allow for
very high resolution, often approaching the limit dictated by
their pixel size.8 However, each pixel requires a significant
amount of electronics to operate, which leads to considerable

9
structured noise patterns.

3082…/308/12/$23.00 © 2006 Am. Assoc. Phys. Med.
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Several researchers have considered display resolution
when evaluating image quality for soft-copy displays.7,10,11

The resolution of a display does influence the information
content of an image, but other factors also affect the dis-
played image. For instance, investigators have more recently
given attention to the noise properties of display devices.9,12

As the magnitude and spatial frequency content of noise may
impact the overall clinical utility of a display device, one
must quantify both the resolution and noise of these displays
to form an accurate picture of display performance.

The purpose of this work is to measure the resolution and
noise properties of several medical displays, including both
CRT and LCD technologies. Two key metrics were exam-
ined, the modulation transfer function �MTF� and normalized
noise power spectrum �NPS�, which summarize the resolu-
tion and noise properties of the display, respectively.13–16 In
addition, this paper introduces new methods for isolating the
structured noise of CRTs and LCDs.

II. METHODS AND MATERIALS

A. Display description

Five different medical-grade display devices were evalu-
ated, as listed in Table I, representing both cathode ray tube
�CRT� and liquid crystal display �LCD� devices. All displays
were calibrated to the Digital Imaging and Communications
in Medicine �DICOM� standard according to the display
manufacturer before measurements. All experiments were
conducted in a room with controlled low ambient lighting set
to 9 lux illuminance.

B. Camera description and evaluation

The physical characteristics of the display devices were
measured using a charge-coupled device �CCD� camera
�XCD-SX900, Sony Corporation, Tokyo, Japan� equipped
with a macro lens �Rodgen 1:4, 28mm, Rodenstock,
Munich, Germany�. The camera captured images of 1280
�960 pixels in size with a CCD chip of 6.5�4.8 mm em-

TABLE I. Description of the five display systems evaluated in this study. The
reflect quantities measured in our laboratories �Ref. 25�. The last row indica
pixels used to image one display pixel.

Barco MGD 521 Barco MGD 521M

Display Card Barco MP1H Barco 5MP2
�10-bit� �10-bit�

Type CRT CRT
Additional properties p45 phosphor p45 phosphor

Pixel pitch �mm� 0.148 0.148
Matrix size 2048�2560 2048�2560

Active display area 304 mm�380 mm 304 mm�380 mm
Lmin�Cd/m2� 0.52 0.60
Lmax�Cd/m2� 308 316

Magnification ratio
for measurement

29.6 29.6
ploying a pixel size of 4.65�4.65 �m. The lens was set to
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its highest magnification, such that one camera pixel imaged
a 0.0050 mm�0.0050 mm area in the focal plane. The lens
used a small aperture with a f-stop of f /11 to ensure the
camera had a relatively large depth of field, which allowed
objects near the true focal plane to also be captured with
relative sharpness. The camera was secured on a custom gan-
try, offering coarse linear movement as well as fine linear
movement with 0.01 mm precision �See Fig. 1�. Data were
transferred to a PC workstation through a FireWire connec-
tion using an image acquisition software �ImageJ; Research
Services Branch, National Institute of Mental Health,
Bethesda, Maryland�.

To correct for any gain nonuniformities from the camera,
the flat-field response of the camera was measured. As the

five rows are based on manufacturer specifications, while the next two rows
e magnification ratio used for image acquisition, or the number of camera

National display National display
IBM T221 systems Nova III systems Nova V

IDIA Quadro FX 4000 RealVision MD3mp RealVision MD5mp
2-bit floating point� �10-bit� �10-bit�

LCD LCD LCD
Color display

0.125 0.207 0.165
3840�2400 1536�2048 2048�2560

478 mm�299 mm 318 mm�424 mm 338 mm�422 mm
0.83 0.43 0.52
235 369 371
25.0 41.4 33.0

FIG. 1. High-quality CCD camera mounted on custom gantry for measure-
ment of display characteristics. The gantry was capable of both coarse and
first
tes th

NV
�3
fine linear movement.
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gain characteristics of the camera depended on luminance,
this measurement was conducted for each of the luminance
levels used during display measurements. The light source
consisted of a standard radiographic lightbox �X-ray Film
Illuminator, S&S X-ray Products, Brooklyn, NY� covered
with a neutral density filter to achieve a given luminance.
Opal diffusing glass �Edmund Optics, Barrington, NJ� was
placed next to the filter, which created a near Lambertian
source. The camera was supplemented with a cone con-
structed of graphics arts black paper with velvet-type, black,
light absorbing cloth. This ensured that the camera only cap-
tured light that had come through the diffuser. Finally, the
diffuser was positioned several centimeters behind the cam-
era focus; otherwise this may have revealed small nonunifor-
mities in the diffuser, affecting the results. The camera ac-
quired ten images at each luminance level. A gain map was
formed from the average of these images. All subsequent
display measurements were corrected by the appropriate gain
map �corresponding to the approximate average luminance
of the display� as

I��x,y� =
ḡ�L� − �

G�L;x,y� − �
�I�x,y� − �� , �1�

where G(L ;x ,y) represents the average flat-field image at
luminance L with mean ḡ�L� , I(x ,y) refers to the uncor-
rected image, � represents the pixel value at zero luminance
value, and I�(x ,y) corresponds to the corrected image.

The inherent resolution performance of the camera was
computed using the edge technique. The camera acquired an
image of an edge of a 1 mm square on a glass slide resolu-
tion target �1951 USAF slide, Edmund Industrial Optics,
Barrington, NJ�. The slide was backlit using the same light-
box covered with a neutral density filter to achieve a lumi-
nance level of 269 cd/m2. The MTF was calculated from the
edge image using a previously published method.17 First, a
Radon transformation was applied to the data to determine
the line angle with 0.01 deg accuracy. The image data were
then projected along lines parallel to the edge transition,
forming the edge spread function �ESF�. This projection was
applied in a 1.19 mm�1.19 mm region centered on the edge
and the data were placed into bins of 0.1 pixel in size. A
fourth-order moving polynomial fit provided modest smooth-
ing for the ESF while minimizing noise. The ESF was sub-
sequently differentiated using a discrete derivative to form
the line spread function �LSF�. The tails of the LSF were
forced to zero using a Hann window of 0.5 mm. Finally, the
MTF was computed from the normalized fast Fourier trans-
form �FFT� of the LSF.

C. Measurement of display resolution

The display resolution was measured using the line spread
function �LSF� technique. The TG18-RV50 and TG18-RH50
test patterns provided vertical and horizontal line patterns,
respectively.7,18 These patterns utilized subtle lines, with
12% pixel value contrast from the background, in order to
satisfy the quasilinear system requirements of the MTF mea-

surements. The CCD camera acquired magnified images of
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the displayed line pattern for each display device, where the
line appeared approximately in the center of its field of view.

One caveat to the MTF measurement process concerns the
concept of focus. While the camera must be in focus to cap-
ture correct information, the literature devotes few references
to quantitative definitions of focus. As out of focus images
are relatively blurred compared to their in-focus counter-
parts, the level of detail in a focused image is maximized,
thus maximizing the standard deviation of the image.11 As
the camera in this study used a small aperture, it offered a
relatively large depth of field. This allowed the camera to
provide in focus images of LCDs that are composed of sev-
eral thin, closely spaced planes of electronics and optical
equipment. Experimentally, focusing was achieved by plac-
ing the camera where the image visually appeared to be in
focus. The camera was then moved around that initial posi-
tion sequentially until the standard deviation of the image
was maximized. The image that possessed the highest stan-
dard deviation was considered to be in focus.

Our MTF measurement technique aimed to characterize
the MTF of displays independent of noise properties for the
display. As CRT displays and LCDs possessed different types
of structured noise, the structured noise was removed from
the line images using two different methods. For CRT dis-
plays, a structure map was created of the raster lines by
averaging the image data along the raster line direction. The
raster map was then subtracted from the line image to create
a structure-free image. This procedure only averaged over
areas of the image not containing the line test pattern. For
vertical line patterns where the line pattern was perpendicu-
lar to the raster structure, this method could create a map of
all raster lines. However, for horizontal line patterns, the line
pattern was parallel to the raster lines and thus the area im-
mediately surrounding the line pattern was excluded from
this correction procedure. For LCDs, we averaged 20 pic-
tures of the line pattern and 20 pictures of the pixel back-
ground. The average background image was then subtracted
from the average line image.11 The MTF was computed from
these structure-free line images.

The MTF was calculated from the acquired line images
using a modified version of the MTF calculation routine de-
scribed in Sec. II B. To calculate the line angle, the image
was blurred with a Gaussian kernel and then thresholded.
The magnitudes for the Gaussian blur and the thresholds
were determined from statistical analysis of the experimen-
tally acquired images to give the best estimate of the line
angle unaffected by noise. The angle of this thresholded line
was then determined through a linear regression. Next, the
pixel values of the original image were binned along lines
parallel to the line pattern to form the line-spread function.
This binning occurred in a 2.5 mm�2.5 mm region centered
on the line pattern with bins of one camera pixel in size. To
correct for background trends in the data, a line was fit to the
tails of the LSF.

Signal processing of the LSF preserved the central line
area, defined as four display pixels on either side of the line
peak, while processing the data in the tails of the LSF. A

modified Hann window of one display pixel in width was
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utilized to force the tails of LSF to zero, while protecting the
central line area. The window took the following functional
form

H�x� = �
1 �x� � a

�1

2
��1 + cos	�

�x� − a

b − a

� a � �x� � b

0 �x� � b
� , �2�

where x represents the distance from the central peak of the
line spread function, a denotes the length of the protected
central line area �i.e., four display pixels in our routine� and
b−a corresponds to the distance over which the Hann win-
dow goes to zero �i.e., one display pixel in this routine�.
Figure 2 illustrates a simple case of applying the window
function to a noisy line spread function.

Finally, the MTF was computed as the normalized FFT of
the LSF. To account for the camera MTF and display pixel
size, the results were divided by the MTF of the CCD cam-
era and the sinc function corresponding to the display pixel
size as

MTFdisplay�u� =
MTFmeasured�u�

MTFcamera�u�Sinc�u��
, �3�

where MTFcamera represents the camera MTF, MTFmeasured

refers to the experimentally measured MTF, � describes the
pixel size, and MTFdisplay corresponds to the true MTF of the
display device.

D. Measurement of display noise

The noise was evaluated using Fourier analysis of uni-
form images. For each display device, the camera acquired

FIG. 2. Schematic of windowing procedure for the line spread function. The
top curve shows a simple example of the Hann window. The middle subfig-
ure illustrates an example noisy line spread function. The final subfigure
shows the line spread function after application of the Hann window. This
forces the edges of the LSF to zero to meet the criteria for Fourier analysis.
magnified images of a uniform gray area of the TG18-NS50
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test pattern.18 Similar to the resolution measurements, sev-
eral preliminary images were acquired to determine whether
the images were in focus. The frequency content of the im-
age noise was evaluated in terms of the normalized noise
power spectrum �NPS�.17,19 First, a region �3.8 mm
�5.1 mm� was extracted from the center of the image. This
method assumed that the pixel structure in this region would
be representative of the other areas of the display. This as-
sumption should be satisfied by most displays constructed
using modern manufacturing methods, producing similar
pixel structures across the display. The region was then seg-
mented into 117 overlapping regions of interest �ROIs� of
256�256 pixels�1.3 mm�1.3 mm�. The ROIs overlapped
with each of their nearest neighbors by 50%. Each region
was scaled by its mean pixel value to form the relative sig-
nal. A Hamming window was applied to each ROI to ensure
the ROI approached zero at its edges. After computing the
two-dimensional FFT of each ROI, the NPS was computed
as the average of the absolute magnitude squared of each
FFT.

In order to further understand the noise properties of the
displays, the total noise was decomposed into two different
categories following an analysis similar to a previous study.9

This separated the total noise into two classes corresponding
to different physical properties of the display: interpixel and
intrapixel variations. The first category, interpixel variations,
included the differences in luminance between pixels. CRT
phosphor structured noise could be considered as interpixel
noise, while for a LCD, such fluctuations were often caused
by the nonuniform thickness of the liquid crystal elements
across the display. The physical structure of the pixel caused
the second form of variation, intrapixel noise. Whereas an
observer would experience both forms of noise when view-
ing images on a display, this analysis explored how much of
the total noise of a display was due to interpixel luminance
variations and the pixel structure �i.e., intrapixel� compo-
nents.

To isolate the interpixel luminance variations, the images
were processed to remove the physical structure of the pixels
or intrapixel variations. For CRT displays, the pixel structure
was removed by the raster profile subtraction method �see
Sec. II C�. For LCDs, the following procedure was followed.
The experimentally acquired uniform images were rotated to
align their pixels along the horizontal direction. Due to care-
ful camera positioning, this rotation angle remained below
1°. The rotated image was summed across both the horizon-
tal and vertical directions. These horizontal and vertical
traces showed a peak at the center of each subpixel, such that
a full pixel could be constructed by counting the appropriate
number of horizontal and vertical peaks. The procedure then
created a pixel grid across the image, as displayed in Fig.
3�a�. The routine looped through the grid and centered each
grid rectangle on the pixel center. This pixel grid was visu-
ally inspected to ensure that the grid properly enclosed the
pixels. An image of interpixel luminance variations was then
formed where each grid rectangle was replaced by its mean

luminance value. While this process removes the subpixel
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structures for the LCD, the inherent pixelation effects asso-
ciated with digital images remains. An example of this pixel
alignment procedure is shown in Fig. 3�b�. The NPS was
recalculated from the pixel-structure-removed LCD and CRT
images to examine the contribution of pixel structure to the
total display noise.

III. RESULTS

Figure 4 illustrates the inherent MTF and NPS of the

FIG. 3. Graphical description of pixel alignment procedure �a� and example
indicate the borders of the pixel box.
CCD camera. The camera provided a very high MTF over
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the frequency range of interest, declining only to 0.88
at 10 mm−1. The MTFs of all displays were corrected by the
MTF of the camera to present an accurate estimate of display
resolution. However, the noise images were not corrected
by the MTF, as this would unacceptably amplify the
high-frequency noise.10 The camera NPS corresponded to
white noise with a very low magnitude of 5 ·10−9 to
10−8 mm2 over the entire frequency range of interest. This
indicates that the camera added minimal noise to the ac-

xel alignment procedure on region of IBM T221 display �b�. The dark lines
of pi
quired images.
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Figure 5 shows the measured MTF for the five display
devices over the frequency range of interest from zero fre-
quency to the Nyquist frequency dictated by the display pixel
size. The first two graphs �Figs. 5�a� and 5�b�� pertain to
CRT display devices while the final three plots �Figs.
5�c�–5�e�� pertain to LCDs. The LCD MTFs stayed close to
unity throughout the clinically relevant frequency range of
0–4 mm−1, while the MTFs for CRT displays contained far
less power at higher frequencies. Each plot includes the MTF
calculated along the horizontal and vertical directions in or-
der to indicate any potential asymmetries in resolution. The
horizontal and vertical MTFs remained similar for the LCDs,
which indicated little asymmetry in the resolution properties
of these display devices. This contrasted with the CRT dis-
plays, which exhibited notable differences between the hori-
zontal and vertical directions, as different physical properties
control the resolution in each direction.6 As noted in Sec.

FIG. 4. Plot of the �a� MTF and �b� radial trace of the NPS of the CCD
camera. The MTF remains high over the frequency range of interest. The
NPS magnitude remains white and low over the entire frequency range of
interest.
II C, the horizontal MTF included some effects from the
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raster line pattern, which contributed some noise to the mea-
sured MTF.

Figure 6 illustrates traces of the normalized noise power
spectrum of the total system noise for five display devices.
The NPS for the CRT displays showed one peak in the ver-
tical direction corresponding to the raster line structure. In
contrast, the NPS for the LCDs revealed multiple peaks from
the subpixel structure. In addition, the overall noise magni-
tude for the CRT displays was lower than that of the LCDs.
Figure 7 shows, for example, two-dimensional NPS pre-
sented in a logarithmic scale for an example CRT and an
example LCD. The CRT NPS exhibited only two peaks
along the vertical axis while the LCD NPS presented a com-
plex structure across the frequency range.

Figure 8 illustrates the NPS calculated from the images
after pixel structure removal. The NPS for CRTs no longer
exhibited a peak in the vertical direction, as the raster struc-
ture was eliminated, while the magnitude remained largely
constant. For LCDs, the overall noise magnitude dropped
significantly. In addition, the shape of the NPS changed, such
that the shape now resembled the sinc function correspond-
ing to the display pixel size. Figure 9 shows two examples of
two-dimensional NPS after the structure removal procedure.
Compared to their counterparts in Fig. 7, these NPS of the
interpixel luminance variations exhibited few peaks from the
pixel structure, but peaks due to the inherent pixelation ef-
fects remained. Table II summarizes the magnitude of the
noise for displays before and after the structure removal pro-
cess. As expected, the pixel structure removal procedure
greatly lowered the overall variance for LCDs, indicating
that subpixel structure acts as the primary source of noise for
LCDs. In contrast, the variance for CRT displays stayed
similar to the noise variance without pixel structure removed,
suggesting that interpixel luminance variations compose the
primary form of noise for this display type.

IV. DISCUSSION

To fully quantify the performance of a digital x-ray imag-
ing system, the properties of the display device must be con-
sidered. This work measured both the resolution and noise of
two medical display technologies using a robust methodol-
ogy for the in-field measurement of display resolution in
clinical settings. The measurement procedure corrected for
differing pixel structure, which isolated the structured noise
from luminance variations between pixels. If implemented
commercially, this methodology may be used by institutions
interested in display characterization.

Our MTF calculation procedure was very similar to pre-
vious work by Samei and Flynn7 with two notable differ-
ences. First, the line angle was computed using a linear re-
gression of the thresholded line, as opposed to a Hough
transform. The regression showed less sensitivity to the
structured noise common to LCDs. Second, in order to re-

duce the impact of display noise on our MTF results,
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we removed the pixel structure noise from the line pattern
images. For LCDs, the structure removal was similar to that
of Roehrig et al.11 However, this methodology proved diffi-

FIG. 5. Measured MTFs for �a� Barco MGD 521, �b� Barco MGD 521M,
displays, the horizontal and vertical MTFs diverge due to the difference in
asymmetry exists between the horizontal and vertical axes and the MTF rem
cult to implement for CRT displays because of temporal lu-
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minance variations. This led to the use of the raster line
correction procedure, which operated on a single image.

Our noise computation procedure differed from previous

M T221, �d� NDS Nova III, and �e� NDS Nova V displays. For the CRT
processes impacting resolution in the two directions. For the LCDs, little
high over the frequency range of interest.
�c� IB
the
ains
measurement algorithms in the following ways. Unlike
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Muka et al.20 we did not correct the uniform images by the
MTF of the measurement camera, as this led to an undesir-
able amplification of high-frequency noise. However, we ac-

FIG. 6. Horizontal and vertical traces of the NPS of the total system noise fo
and �e� NDS Nova V displays. The pixel structure causes notable peaks in t
to one peak in the vertical direction.
quired all images with a narrow aperture, using only the
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central area of the lens and a high magnification. These two
steps led to minimal resolution degradation and distortion by
the lens. Similar to Badano et al.9 we separated the interpixel

Barco MGD 521, �b� Barco MGD 521M, �c� IBM T221, �d� NDS Nova III,
PS for the LCD displays, while the raster structure of the CRT displays led
r �a�
he N
and intrapixel noise contributions. However, we did not use
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their pixel registration methodology to remove LCD pixel
structure because of its computational cost. Instead, we ex-
amined other pixel features for LCDs to develop a pixel
grid. Similar to that study, however, our pixel correction al-
gorithm noticeably lowered the overall image noise due to
the elimination of the pixel structure.

Before any measurements took place, considerable effort
was devoted to characterize the properties of the CCD cam-
era. This study included corrections for the experimentally
measured MTFs by the inherent MTF of the CCD camera. At
4 mm−1, the magnitude of this correction was 3.7%. In addi-
tion, careful gain calibration was performed to minimize any
distortion by the lens. The magnitude of gain calibration was
as high as 7.2%, with an average of 1.1%. Taken together,
these two effects may have an appreciable effect on the mea-
sured MTF and NPS of a display device.

This research used a high-optical magnification to capture
high-quality images of the display device. This allowed us to
characterize the pixel structure with high precision, as the

FIG. 7. Two-dimensional NPS displayed in a logarithmic scale for �a� Barco
MGD 521 and �b� IBM T221 displays. The raster line leads to vertical peaks
for the CRT display, while the pixel structure of the LCD produces multiple
peaks across the NPS.
images showed the fine detail of the subpixel elements. In
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addition, this minimized the contribution of camera blur.
However, using a high-optical magnification reduced the
camera field of view. Therefore, our analysis had less power
in characterizing low-frequency variations often recognized
as nonuniformities. This paralleled the work of previous in-
vestigators in not characterizing broad nonuniformities as
noise.9

The NPS results showed that luminance differences be-
tween pixels constituted the primary noise source for CRT
displays. The pixel structure removal eliminated the peak in
the NPS, corresponding to the frequency of the raster lines,
but did not alter the magnitude of the NPS. In contrast, pixel
structure served as the primary noise source for LCDs. After
removing structured noise, the shape of the NPS changed
and the overall magnitude of the NPS dropped dramatically.
This indicated that pixel structure remains the dominant
source of noise for LCDs, confirming the results of Badano
et al.9 However, the pixel corrected NPS curves of CRT and
LCD devices should be compared with caution as the pixel
structure removal methodology differed for the two display
types, due to differing pixel structures. This analysis ex-
plored what factor, interpixel luminance variations or pixel
structure �intrapixel variations�, represented the primary
source of noise for each display type.

To understand the magnitude of the noise levels in Table
II, these metrics can be compared to the quantum noise level
in clinical images. For instance, the noise levels in represen-
tative mammograms and chest radiographs, including quan-
tum noise and electronic noise, is approximately 1%–3% in
terms of the standard deviation to the mean image grayscale
value. The display noise values, as summarized in Table II,
are comparable to these figures. This illustrates the impor-
tance and potential impact of display noise on diagnostic
performance.

The noise-to-signal ratios calculated in Table II contain all
noise in the image. However, two processes could reduce the
impact of noise on human perception. First, there have been
indications that human observers can prewhiten structured
patterns from images, thus reducing their potential impact.21

In the case of total prewhitening, the right columns of Table
II would be more representative of display noise than the left
columns. However, it is uncertain to what extent humans can
prewhiten the structured noise of display devices. Second,
human observers do not perceive the different spatial fre-
quencies of a scene with equal acuity. One can estimate how
much of the display noise could be perceived by a human
observer by filtering the measured NPS results with the hu-
man visual response function V(�) �Ref. 22� as

NPSfiltered�u,v� = NPSmeasured�u,v��V����2,

V��� = �	�a1 · e−a2�a3�2 �4�

where � describes the radial spatial frequencies of the image
in cycles/millimeters assuming a viewing distance of 40 cm,
	 normalizes V(�) to one as its maximum value, and param-
eters �a1 ,a2 ,a3� equal �1.5, 3.22, 0.68�. The areas under the

filtered NPS can be used as a measure of perceived noise.
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The results, shown in Table III, indicate that the majority of
pixel structured noise of LCDs will be blurred by the human
visual system. The blurring was more effective for the nine

FIG. 8. After correcting for pixel structure, the noise variance drops dramat
Barco MGD 521, �b� Barco MGD 521M, �c� IBM T221, �d� NDS Nova III
megapixel LCD tested given its smaller pixel structure.
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Considering the extent of possible prewhitening and fre-
quency filtering processes, the above analysis only serves as
a preliminary step in understanding the visual relevance of

. This may be seen in the horizontal and vertical traces of the NPS for �a�
�e� NDS Nova V displays.
ically
, and
display noise. As the quantum noise figures noted previously
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do not compensate for the human visual response, these new
noise-to-signal ratios for displays cannot be directly com-
pared to detector noise levels. In addition, these noise figures
are not reduced to detectability indices for specific clinical

FIG. 9. Two-dimensional NPS calculated from the interpixel luminance
noise displayed in a logarithmic scale for �a� Barco MGD 521 and �b� IBM
T221 displays. The structure removal procedure eliminates many of the NPS
peaks. While this removed the subpixel structure for the LCD display, the
inherent pixelation effects remain, as evidenced by the low amplitude regu-
lar peaks.

TABLE II. Noise-to-signal ratio �standard deviation divided by the mean� for
the CRT and LCD displays before and after the pixel structure removal
procedure. These numbers were computed from the two-dimensional NPS
using Parseval’s theorem.

Noise-to-Signal Ratio �
 / �x�
Manufacturer and Without pixel structure With pixel structure

model removal �%� removal �%�

Barco MGD 521 6.13 5.86
Barco MGD 521M 6.97 6.20

IBM T221 42.45 1.67
NDS Nova III 43.81 1.03
NDS Nova V 51.88 1.80
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tasks.23,24 Nonetheless, physical measurements, as under-
taken in this study, form a necessary first step in character-
izing a display system. Our future work will include observer
experiments in order to more fully understand how the reso-
lution and noise characteristics of displays affect clinical
performance.9,24

V. CONCLUSIONS

This paper reports an assessment of image quality for five
different commercial display devices representing both CRT
and LCD technologies. The findings confirm that LCDs offer
higher MTFs than CRT displays. Yet, the resolution advan-
tages of LCDs must be considered in light of their noise
properties. The CRT displays show a lower MTF, but also
demonstrate lower noise. Finally, this study introduces a new
means of isolating interpixel variations for both CRT and
LCD devices, which will facilitate the noise comparison be-
tween monitors using different pixel structures.
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ABSTRACT 
 
Scattered radiation plays a significant role in mammographic imaging, with scatter fractions over 50% for larger, denser 
breasts.  For screen-film systems, scatter primarily affects the image contrast, reducing the conspicuity of subtle lesions.  
While digital systems can overcome contrast degradation, they remain susceptible to scatter’s impact on the image 
resolution and noise.  To better understand this impact, we have created a Monte Carlo model of a mammographic 
imaging system adaptable for different imaging situations.  This model flags primary and scatter photons and therefore 
can produce primary-only, scatter-only, or primary plus scatter images.  Resolution was assessed using the edge 
technique to compute the Modulation Transfer Function (MTF).  The MTF of a selenium detector imaged with a 28 kVp 
Mo/Mo beam filtered through a 6 cm heterogeneous breast was 0.81, 0.0002, and 0.65 at 5 mm-1 for the primary beam, 
scatter-only, and primary plus scatter beam, respectively.  Noise was measured from flat-field images via the noise 
power spectrum (NNPS).  The NNPS-exposure product using the same imaging conditions was 1.5·10-5 mm2·mR, 
1.6·10-5 mm2·mR, and 1.9·10-5 mm2·mR at 5 mm-1 for the primary, scatter, and primary plus scatter beam, respectively.  
The results show that scatter led to a notable low-frequency drop in the MTF and an increased magnitude of the NNPS-
exposure product.  (This work was supported in part by USAMRMC W81XWH-04-1-0323.) 
 
Keywords: Image Quality, Mammography, Simulation, Monte Carlo, Modulation Transfer Function, MTF, Noise Power 
Spectrum, NNPS 
 

1. INTRODUCTION 
 
Scattered radiation has a significant impact on image quality in medical imaging.  For mammographic imaging, previous 
studies have estimated that 50% of all photons reaching the detector when imaging large, dense breasts are scattered 
photons.1  Scatter’s effects depend on the particular x-ray detector used.  For screen-film detectors, scatter diminishes the 
conspicuity of subtle lesions by reducing the image contrast.  These contrast limitations are not faced by digital 
mammography.  Digital mammography is affected, however, by scatter’s effects on image resolution and noise.  To 
measure the magnitude of these effects, this study examines system resolution and noise with and without the presence 
of scatter in a variety of imaging situations.  By computing scatter properties, mammography detectors can be designed 
to more effectively reduce the deleterious effects of scattered radiation. 
 
 

2. METHODS AND MATERIALS 
 
2.1 Monte Carlo Description 
 
To isolate the effects of scatter and primary radiation, this study used simulation methods. It simulated the photon 
transport physics using Penelope Monte Carlo code (version 2005).2 Penelope performs accurate simulation of the 
physical photon interactions through use of both numerical databases and analytical cross-sections.  Penelope has been 
proven accurate for electrons, positrons, and photons in the range of 50 eV to 1 GeV.3    
 



The Monte Carlo was used to form a model of a direct flat-panel mammography system.  This model, as shown in Figure 
1, consisted of an anode, breast phantom, and a selenium detector.  For resolution studies, a tungsten edge was 
positioned on top of the breast in order to compute an edge spread function.  In addition, for some runs an antiscatter grid 
was located on top of the detector to explore the effects of these devices.  To ensure the realism of this model, published 
data was used to set the physical properties for the photons, material compositions, and attenuation.  The photons were 
emitted from the anode according to an angular distribution based on previous work.4  The photon energies were 
distributed according to previously measured bremsstrahlung distributions filtered by the tube filtration.5-7  The 
molecular composition of glandular material was provided by previous publications,8 while the composition of adipose 
tissue was provided by Penelope.9  Attenuation data for all materials was provided by Penelope. 
 

 
Figure 1.  Schematic of simulated imaging system.  In this case, the breast has a heterogeneous composition, such that the breast is 
composed of ten interleaving slabs of glandular and adipose tissue.  The tungsten edge is used for assessing resolution, but is removed 
for noise evaluation. 
 
Once a photon underwent a scattering event, such as coherent scatter or incoherent/Compton scatter, the photon was 
labeled as a scattered photon.  Any secondary particles created from an interaction also were labeled as scattered 
photons.  By using this labeling, the code could produce images containing only primary photons, only scattered 
photons, or both primary and scattered photons.  If a photon interacted with the detector, the code would track the 
electrons produced and record the electron’s position and energy.  The positions were binned into pixels of 0.05 mm and 
the energy was integrated to produce the image signal.  In addition, the code recorded the energy spectrum of all photons 
impinging upon the detector, regardless of whether these photons were recorded by the detector.   
 
To efficiently investigate the effects of different model parameters, we established a default case, as shown in Table I. 
The effect of a specific parameter was investigated by setting all other parameters to their default value and varying only 
that one parameter.   For instance, to explore the effects of different beam energies, all other parameters were held 
constant (breast composition, anode type, breast thickness, breast location, and grid status) and only the energy of the x-
ray beam was varied. 
 
Table I.  Range of Simulation Parameters.  The effects of specific parameters are investigated by using default values for all other 
parameters and varying that specific parameter. 
Parameter Default Value Range of Values 
Breast Composition Heterogeneous 100% Adipose, Heterogeneous, 100% Glandular 
Grid Status No Grid No Grid, Mammographic Grid 
Beam Energy 28 kVp 25 kVp, 28 kVp, 32 kVp, 35 kVp 
Location Breast Center Chest Wall, Breast Center, Nipple 
Breast Thickness 6 cm 2 cm, 4 cm, 6 cm, 8 cm 
Tube Mo/Mo Mo/Mo, W/Rh 
 
To further model mammographic systems, all images were gain corrected to account for intensity variations.  Emulating 
commercial systems, 10 images were acquired of a 4 cm Lucite block placed at the tube side of the system (63 cm from 
the detector).  The 10 images were averaged together to form the gain map.  All images were corrected by the 
appropriate gain map as: 



 

( , ) ( , )
( , )
GI x y I x y

G x y
′ = ⋅                   (1) 

 
where I represents the input image, I’ corresponds to the corrected image, and G is the average of the 10 gain images 
with mean G .  There was no offset correction as the simulated system had zero offset: an image acquired at zero 
exposure would have zero signal everywhere. 
 
2.2 Resolution and Noise Assessment 
 
Resolution was assessed through the Modulation Transfer Function (MTF).10  This was accomplished using modified 
versions of established assessment routines.11-13   Briefly, the routine went through the following steps.  The routine first 
smoothed the image with a Gaussian smoothing kernel to reduce noise and then used a Sobel method to find the edge 
transition.  The edge angle and intercept were determined through a linear regression.  However, as the edge angle was 
known a priori for these simulation studies, that parameter was entered in manually.  By binning the data along lines 
parallel to the edge transition, the edge spread function (ESF) was computed.  As opposed to previous publications, in 
this work the line spread function was not computed using a finite difference, as this was overly sensitive to noise.  
Rather, the LSF was found from a third order moving polynomial fit.  After computing the polynomial fit for an area 
around a given point, the derivative of that fit became the value of the line spread function for that point.  Figure 2 shows 
examples of this polynomial differentiation compared to finite difference techniques.   
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Figure 2.  Examples of different differentiation methods without noise (left) and with modest noise (right).  The top plot shows an 
edge spread function with its associated line spread functions underneath.  Without noise, finite difference methods and the 
polynomial method gave similar answers (differing by 0.3% over the range from -10 mm to 10 mm).  However, in the presence of 
moderate noise, the two methods gave dramatically different answers.  The polynomial method produced a similar LSF to the case 
without noise, while the finite difference method produced a substantially noisier LSF in which the line peak is barely visible.   
Next, the resolution assessment routine smoothed the tails of the LSF to lower the noise of the MTF while preserving the 
central area of the line spread function.  This preserved the shape of the MTF, as the MTF shape is determined by the 
width of the line spread function peak, but the smoothing removed significant amounts of noise.  Finally, the LSF was 
transformed by a Fast Fourier Transform (FFT), normalized by its value at zero frequency, and the MTF was computed 
as the absolute value of that quantity. 
 
Noise was measured by the Noise Power Spectrum (NNPS).14-16  The images were segmented into 49 overlapping ROIs 
that measured 6.4 mm x 6.4 mm in size.  The routine subtracted off the mean of each ROI and then normalized each by 
their mean and the pixel size.  Each ROI was scaled by the ratio of its mean to the mean of the ROI in the top-left hand 
corner, to minimize the influence of intensity variations across the image.  Each ROI was transformed by an FFT, 
averaged together, and normalized to form the NNPS.  Profiles of the NNPS were taken in the radial, horizontal, vertical, 
and axial directions by averaging a ±5 pixel wide band through the NNPS.  The NNPS were then multiplied by their 
exposure, as the NNPS of a linear system should scale linearly with exposure.  This would discriminate between 
situations where the NNPS is low because it was acquired at a lower dose or because the imaging parameters used led to 
lower noise.   
 



3. RESULTS 
 
Figure 2 shows the energy spectrum of the photons reaching the detector for the default simulation case (6 cm 
heterogeneous breast, 28 kVp, Mo/Mo tube, no grid, center of breast).  Figure 3 also shows the energy spectrum of the 
photons reaching the detector, including both primary and scatter, for varying beam energies.  For each beam energy, the 
photon energy spectrum appears roughly similar for photons below 20 keV, with higher energy beams showing more 
photons at higher energies.  Table II illustrates the scatter fractions for various beam energies.  Similar to previous work,1 
scatter fractions appeared roughly constant with increasing energy. 
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Figure 3.  Normalized energy spectrum of photons, with primary-only, scatter-only, and primary plus scatter cases, reaching the 
detector for the default simulation case (left).  Energy spectrum of all photons reaching the detector (primary plus scatter ) for varying 
beam energies, keeping all other parameters constant (right). 
 
Table II.  Scatter fraction for various beam energies.  The scatter fraction stays roughly constant with beam energy. 

Beam Energy (kVp) Scatter Fraction 
25 0.387 
28 0.387 
32 0.386 
35 0.385 

 
Figure 4 illustrates the resolution and noise for the default simulation case.  Scattered photons caused a low-frequency 
drop in the MTF, but also slightly changed the shape of the MTF at higher frequencies.  The scattered photons act like a 
large blurring kernel, as indicated by its very low MTF.  For the noise, scattered photons decreased the signal to noise 
ratio of the images, as NNPS multiplied by exposure increased between the primary-only case and the primary plus 
scatter case.  Figure 5 shows the resolution and noise for different beam energies.  The MTF and NNPS appear roughly 
constant across beam energies. 
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Figure 4.  Resolution (left) and noise (right) for the default simulation case for primary photons only, scattered photons only, and 
primary plus scattered photons.   Noise is represented by the radial trace of the NNPS multiplied by exposure, as the NNPS of a linear 
system should be inversely proportional to exposure. 
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Figure 5.  Resolution (left) and noise (right) for different beam energies, while controlling all other simulation parameters.   The 
MTFs are plotted for the primary, scatter, and primary plus scatter cases, while the noise metric, the radial trace of the NNPS 
multiplied by exposure, only represent the noise for the primary plus scatter cases. 

 

 
4. DISCUSSION AND CONCLUSIONS 

 
Several previous investigations have modeled the scatter in radiographic systems, but have focused only on scatter 
fractions, contrast improvement, or signal to noise ratios.1,17-23  A limited number of investigations have examined some 
aspect of the resolution and noise effects of scatter.24-26  However, no previous work has comprehensively examined the 
resolution and noise effects of scattered radiation.   
 
This study examined the resolution and noise of an imaging system both with and without the presence of the scatter.  
The results show how scatter affects the frequency content of images.  For the MTF, scatter leads to a low-frequency 
drop but also changes the shape of the MTF, especially at higher frequencies.  For noise, scattered photons add 
considerable noise to the image, leading to NNPS-exposure products with greater magnitudes.    
 



Several items are planned for future work.  The first step would be to record the glandular dose for each imaging 
situation.  Glandular dose would allow researchers to weight the resolution and noise advantages versus the dose given to 
the patient.  Second, the model will incorporate more scatter rejection devices, especially slot-scan devices, to expand the 
model utility.  Finally, these results should be compared against measured results to ensure the validity of the model. 
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The purpose of this study was to measure experimentally the physical performance of a prototype
mammographic imager based on a direct detection, flat-panel array design employing an amorphous
selenium converter with 70µm pixels. The system was characterized for two different anode types,
a molybdenum target with molybdenum filtrationsMo/Mod and a tungsten target with rhodium
filtration sW/Rhd, at two different energies, 28 and 35 kVp, with approximately 2 mm added
aluminum filtration. To measure the resolution, the presampled modulation transfer functionsMTFd
was measured using an edge method. The normalized noise power spectrumsNNPSd was measured
by two-dimensional Fourier analysis of uniformly exposed mammograms. The detective quantum
efficienciessDQEsd were computed from the MTFs, the NNPSs, and theoretical ideal signal to
noise ratios. The MTF was found to be close to its ideal limit and reached 0.2 at 11.8 mm−1 and 0.1
at 14.1 mm−1 for images acquired at an RQA-M2 techniquesMo/Mo anode, 28 kVp, 2 mm Ald.
Using a tungsten techniquesMW2; W/Rh anode, 28 kVp, 2 mm Ald, the MTF went to 0.2 at
11.2 mm−1 and to 0.1 at 13.3 mm−1. The DQE reached a maximum value of 54% at 1.35 mm−1 for
the RQA-M2 technique at 1.6mC/kg and achieved a peak value of 64% at 1.75 mm−1 for the
tungsten techniquesMW2d at 1.9mC/kg. Nevertheless, the DQE showed strong exposure and
frequency dependencies. The results indicated that the detector offered high MTFs and DQEs, but
structured noise effects may require improved calibration before clinical implementation. ©2005
American Association of Physicists in Medicine. fDOI: 10.1118/1.1855033g

Key words: image quality, mammography, modulation transfer function, normalized noise power
spectrum, detective quantum efficiency, digital imaging
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I. INTRODUCTION

Breast cancer remains the second leading cause of c
death for women in the United States. The American Ca
SocietysACSd estimates that in 2004, 215 990 new case
invasive breast cancer will be diagnosed and 40 110 wo
will die from the disease in the United States.1 Early detec
tion of this disease holds the key for survival, as more tr
ment options exist for early stage cancers and treatm
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phy continues to be widely regarded as the most effe
early-detection screening tool available today.2,3 X-ray mam-
mography places severe demands, however, on an im
system. A system must capture small, low contrast ana
cal details, as the early signs of cancer are often very su

While mammography has experienced notable advancemen
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in recent years, further improvement is required as up to
of cancers are missed at the initial screening.4

Full Field Digital MammographysFFDMd offers the
promise of improving mammographic image quality
therefore increasing the utility of this screening procedur5–7

As images are stored in a digital format, a radiologist
view the images at any workstation or many clinicians
have simultaneous access to the images. The use of
processing algorithms enhances various features in th
age. In addition, these systems have the potential to imp
mammographic imaging by separating each stage of th
aging chain, from detection to image processing to dis
allowing each step to be independently optimized.

The current state of the art in digital mammograph
solid-state flat-panel detectors.8 Flat-panel detectors can

tssubdivided into two categories, direct and indirect, named

5882…/588/12/$22.50 © 2005 Am. Assoc. Phys. Med.
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for the mechanisms used to detect x-rays.9,10 In direct detec
tors, a photoconductive layer absorbs an incoming x-ray
ton and converts it to electric charge. A voltage app
across the photoconductor then draws the charges towa
pixel electrodes.11,12 In contrast, indirect detectors utilize
scintillation layer that converts the x-ray photon into vis
light photons, which are subsequently absorbed by phot
sitive elements.13,14Because of the different physical mec
nisms used to detect photons, the image quality charac
tics of these detectors differ substantially. Several p
studies have substantiated some of these differences.9,10,15,16

In addition, two previous studies have examined limited
pects of image quality for selected mammographic dete
using amorphous selenium.17,18

The main purpose of this work was to comprehensi
evaluate the physical image quality characteristics of an
prototype mammographic detector based on a direct d
tion flat-panel array design that employed an amorphou
lenium converter. Three key metrics of image quality w
evaluated for several radiographic techniques, the mo
tion transfer functionsMTFd, normalized noise power spe
trum sNNPSd, and detective quantum efficiencysDQEd,
which described the resolution, noise, and signal to n
performance of the detector, respectively.19–24 As previous
research has shown that selenium detectors can exhib
age lag and ghosting,25 this research also examined the
performance of the detector.

A secondary objective of this research was to cons
new beam qualities for digital mammography. Traditiona
screen-film mammography was performed using a b
from a molybdenum target with molybdenum filtration26

This beam quality might not be optimal for digital mamm
raphy, however, given the different energy sensitivities
greater dynamic range of digital detectors. Several rese
ers had suggested that other beam qualities could allo
better image quality for digital mammography.17,27–30There-
fore, the study examined the image quality characteristic
two different anode types, a molybdenum target with mo
denum filtration and a tungsten target with rhodium filtrat
and for two different energies, 28 kVp and 35 kVp, w
added aluminum filtration.

II. METHODS AND MATERIALS

A. Detector description

The detector investigated in this study was an early
totype mammographic imager based on a direct dete
flat-panel array design that employed an amorphous
nium convertersMammomat NovationDR; Siemens Medica
Solutions; Erlangen, Germanyd. The detector utilized
250 µm amorphous selenium photoconductive layer cou
to a matrix of pixels, each with a storage capacitor and a
phous silicon switching transistor.18 The active detector are
was 23.3 cm328.7 cm consisting of 332834096 squar
pixels. Each pixel was placed with a 70µm pixel pitch and
offered a fill factor of greater than 90%. This product

since received FDA approval.
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Prior to evaluation, the standard antiscatter grid and c
pression paddle were removed from the system. For
measurements, the standard detector cover was placed
system. For the MTF measurements, the detector cove
removed so that an edge device could be placed as clo
possible to the active selenium layer to minimize focal
blur.

The coordinate system used to describe the syste
shown in Fig. 1, referred to the anatomical features
viewed on a craniocaudal view. There were two main a
the chest wall–nipplesCNd axis as well as the left–rightsLRd
axis. By examining the system performance along these
orthogonal axes, one was able to identify any asymmet

B. Image acquisition

A high-frequency, multiphase x-ray generatorsMammo-
mat NovationDRd, for which the high voltage accuracy w
verified to be within ±5%, served as the x-ray source for
system. The anode was operated with a large focal sp
0.3 mmsIECd, nominal, for all image acquisitions. No po
processing was applied to the images. All images were t
ferred to a research computer as 14-bit, raw data for ana

Prior to image acquisition, the detector underwent rou
detector calibration to correct for dead pixels and gain
uniformities. The process formed a dead pixel map by
tecting inactive pixels in a flat-field image acquired at
kVp with a 4 cmPMMA slab in the beam. A gain map w
similarly computed from the average of eight flat-field
ages also acquired at 28 kVp with a 4 cmPMMA slab in the
beam. As no images in this research utilized an antisc
grid, the calibration was performed without a grid in pla
The system corrected all subsequently acquired images
the gain and dead pixel maps.

For all image acquisitions, the exposure to the dete
was measured using a calibrated ionization chambers1515
x-ray monitor with 10X5-6M dedicated mammography i
ization chamber, Radcal Corporation, Monrovia, CAd placed
at 48 cm from the focal spot. As reported in previous stu
this ionization chamber had little energy dependence
mammographic energies.31 Manufacturer specifications no
that the calibration accuracy of the chamber was ±4%sat 20
kVp, 0.26 mm Al HVLd with ±5% energy dependence in t
10 keV to 40 keV range. The exposures incident on the
tector, located at 65 cm distance from the focal spot,
estimated from the measured exposure values usin

FIG. 1. Coordinate system for physical measurements. These axes
beled by the anatomy imaged in the craniocaudal view.
inverse-square law.
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Four different beam qualities were utilized for the im
quality measurements, as outlined in Table I. Two molyb
num techniques, RQA-M2 and RQA-M4, were chosen f
the International Electrotechnical CommissionsIECd stan-
dard 61267-2.32 The standard specified the anode type, an
filtration, kVp, and half-value layer for each beam qua
Aluminum filtration was then placed in the beam to prod
the desired half-value layer. The IEC standard did no
clude corresponding tungsten techniques for mammogr
applications. To facilitate meaningful comparisons betw
detector systems, two additional tungsten techniques, M
and MW4, were used that had similar characteristics to t
of the molybdenum techniques, RQA-M2 and RQA-M4. T
half-value layers for these four beam qualities were m
sured using a narrow geometry and added aluminum fi
tion in 0.1 mm increments around the estimated half-v
layer thickness. The half-value layer thicknesses were
estimated from logarithmic interpolation of the measured
posure values.32

C. Linearity

Linearity was determined by exposing the detector
wide range of uniform x-ray exposures for each of the
radiographic techniques described above. The average
values were computed from a 14.3 cm314.3 cm region lo
cated near the chest wall section of the detector. From
the relationships between mean pixel value and expo
were ascertained for each technique.

D. Modulation transfer function

An edge method, reported in previous pu
cations,9,10,33–36was used to measure the presampled MT
0.1 mm Pt–Ir edge was placed in contact with the detect
1 cm distance from the chest wall edge of the detector.
device was oriented at a 3°–6° angle with respect to the
array. Edge images were then acquired at each of the
radiographic techniques at relatively high exposure valu
16.2mC/kg s62.6 mRd, 15.3mC/kg s59.2 mRd, 9.52mC/kg
s36.9 mRd, and 9.75mC/kg s37.8 mRd for RQA-M2,
RQA-M4, MW2, and MW4 techniques, respectively.

A previously reported routine37 analyzed the edge imag

TABLE I. Beam qualities used for physical characterization of the dete
The aluminum used for the added filtration hadù99% purity.

Name Anode target
Anode

filtration kVp

Added
filtration
smm Ald

Half-value
layer

smm Ald

RQA-M2 Molybdenum Molybdenum
s30 µmd

28 2 0.6

RQA-M4 Molybdenum Molybdenum
s30 µmd

35 1.8 0.68

MW2 Tungsten Rhodium
s50 µmd

28 2 0.79

MW4 Tungsten Rhodium
s50 µmd

35 2 0.92
in a region around the edges21.2 mm335.8 mmd to deter-
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mine the presampled modulation transfer functionsMTFd. In
summary, first a double Radon transformation determine
angle of the edge transition with 0.01° accuracy. The
spread functionsESFd was computed by projecting the ima
data along lines parallel to the edge transition using bin
of 0.1 pixels. To minimize noise, the ESF was smoo
using a modest fourth-order moving polynomial fit and
ferentiated to form the line spread functionsLSFd. A Han-
ning window with 10 mm width was then applied to the L
to force the tails of the LSF to zero. Finally, the presam
MTF was computed as the normalized Fast Fourier Tr
form of the LSF.

E. Normalized noise power spectrum

To characterize the system noise, images were acqui
uniform beams of radiation for the different techniqu
while the exposure was simultaneously measured wit
ionization chamber. The NNPS was then computed
these flat-field images using previously publis
methods.36–38A large region near the chest wall side of
detector, excluding the edges of the image, was use
analysis. This region was segmented into 256 sequenti
gions of interest sROIsd of 1283128 pixels. A two
dimensional polynomial surface was subtracted from
region of interestsROId to minimize background trendin
and a Hamming window was applied to each ROI so tha
edges of the ROI went to zero. To account for intensity va
tions in the image, each ROI was then scaled by the ra
its mean to the mean pixel value of the ROI in the top-
hand corner of the image. Each ROI was transformed
two-dimensional FFT and the absolute magnitude squar
each FFT was averaged together to obtain the NNPS.
procedure could be summarized in the following equatio37

NNPSsu,vd =
dA

M ·N2o
i=1

M H kROIil
kROI1l

UFFTF 1

kROIil
sROIi

− kROIildGU2J , s1d

wheredA represented the pixel area,M described the numb
of regions of interest in which the image was segmenteN
corresponded to the number of pixels along one edge
ROI, ROIi referred to a particular region of interest wit
the flat field image, ROI1 corresponded to the ROI in t
top-left corner of the image, andkROIil was the mean o
ROIi. To summarize this two-dimensional information
one-dimensional form, horizontal and vertical traces w
obtained by averaging together the central frequency b
sthe central axis and ±5 frequency linesd. Radial traces wer
also obtained by radial averaging.

The magnitude of the NNPS could be related to the im
variance using Parseval’s Theorem39 and applying ergod
assumptions. This allowed the replacement ofkROIil by kIl,
the mean of the entire image, and the mean variance o
ROIs became the variance of the image,s2. One could the

show that
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o
u,v

NNPSsu,vd =
N2dA

kIl2 s2. s2d

For a linear, quantum-limited detector,kIl ands2 are propor
tional to the exposure,E, which would make the product
the NNPS and exposure independent of exposure. The
uct of NNPS and exposure was then used as a way to a
how well the detector approximated a quantum-limited
tector.

A second examination of system noise utilized a b
ground subtraction method, which isolated the quan
noise components of total system noise.39–42An average im
age was created from ten repeated images acquired wi
RQA-M2 technique at 125 mAs. The average image
then subtracted from one of the individual images to for
“background-free” image. The NNPS was then comp
from the “background-free” image. To correct for the cha
in image variance caused by the averaging technique
NNPS for the “background-free” image was multiplied
N/ sN−1d, whereN equaled 10, the number of images u
to create the average image.42

F. Detective quantum efficiency

The measured MTF and NNPS were combined to d
mine the Detective Quantum EfficiencysDQEd as

DQEsud =
MTF2sud

qIdeal·E · NNPSsud
, s3d

whereqIdeal described the ideal signal to noisesSNRd ratio
squared per unit exposure for an energy-integrating dete
andE represented the exposure value at the detector.39,43An
x-ray simulation programsxSpect, Henry Ford Health Sy
temd was used to calculate theqIdeal using a semiempirica
model for the x-ray spectra44 and the attenuation propert
of the material.33 The q values are reported in Table II.

G. Image lag measurement

The magnitude of the multiplicative image lag was ch
acterized using the procedure described in IEC stan
62220-1.45 First, an image was acquired of a uniform rad
tion field at a given exposure at timet1. A second image wa
then acquired of an edge device at the same exposure le
time t2. After a specified delay timet, a third image wa
acquired of a uniform radiation field at timet3. This proce
dure then measured the residual signal from the edge d

TABLE II. Ideal SNR2/mR values calculated for an energy-integrating de
tor. The beams were modeled with the specified intrinsic filtrations as
as the experimentally measured half-value layer.

Name Anode target Anode filtration qIdealsmm−2 mR−1d

RQA-M2 Molybdenum Molybdenums30 µmd 46052
RQA-M4 Molybdenum Molybdenums30 µmd 52542

MW2 Tungsten Rhodiums50 µmd 54773
MW4 Tungsten Rhodiums50 µmd 67781
in the later image.
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To determine the magnitude of the residual signal,
image data were examined for two regions within all th
images, as shown graphically in Fig. 2. An ROI, ROI1, was
placed in an area of image 2 that contained the edge de
A second ROI, ROI2, was placed in an area of image 2 t
was outside of the edge device. The detector was judg
have negligible residual signal with time delayt if it passed
the following test:45

FIG. 2. Illustration of the lag measurement procedure as described
IEC standard 62220-1.

FIG. 3. Plot of mean pixel value versus exposure for two Mo/Mo beam
two W/Rh beams over thesad entire measured exposure range andsbd the
lower exposure range. While the detector exhibits good linearity ove

entire range, divergences from linearity occur in the lower exposure range.
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uszt1
− ht1

d − szt3
− ht3

du

ht1
+ ht3

2

ø 0.005, s4d

wherezt and ht represented the mean of ROI1 and ROI2 at
time t, respectively. The IEC chose the threshold of 0.00
the maximum allowable level of residual signal.

III. RESULTS

Figure 3 illustrates the relationship between pixel va
and exposure for the detector. In general, the system sh
a very linear response with correlation coefficients for lin
regression fits greater than 0.999. One interesting trend
that the detector was slightly more sensitive to the W
beam qualities than the Mo/Mo beams, as the tung
curves resulted in higher slopes and higher pixel value

FIG. 4. Plot of detector MTF alongsad CN andsbd LR axes for two Mo/Mo
beams and two W/Rh beams. The MTFs for the four beams are very s
for the CN axis, but differ along the LR axis. The pixel aperture limit
theoretical MTFsRef. 18d are included for reference.
equivalent exposures. Another trend was revealed by exam
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ining the lower exposure range, such as that shown in
3sbd, where some deviations from linearity were seen.

To verify image repeatability over time, an ensemble
images was acquired at identical mAs. The mean signa
each image was computed as the average pixel value o
region of interest. These images showed very similar s
levels over time, as the mean signal varied by 0.009%
the entire ensemble of images. In contrast, the spatial d
tion, which described how the pixel values varied ac
each image, reached 3.4% for the lowest exposure ima

The resolution properties of the detector, as represe
by the MTF, are shown in Fig. 4 and summarized in T
III. Figure 4sad illustrates the MTF along the CN axis, wh
Fig. 4sbd displays the MTF along the LR axis. While t
MTFs for the tungsten and molybdenum techniques o
lapped considerably for the CN direction, the molybden

TABLE III. Summary of the detector MTF properties along CN and LR a
for stopd Mo/Mo beams andsbottomd W/Rh beams. Shown are frequenc
at specific MTFs and the MTF at specific frequencies. The MTF fo
Mo/Mo beams differed between the CN and LR axes, but was simila
the W/Rh beams.

RQA-M2
sCN Axisd

RQA-M2
sLR Axisd

RQA-M4
sCN Axisd

RQA-M4
sLR Axisd

0.2 MTF 11.1 mm−1 12.7 mm−1 11.2 mm−1 12.5 mm−1

0.1 MTF 12.8 mm−1 14.8 mm−1 12.8 mm−1 14.5 mm−1

0.5 mm−1 0.98 0.99 0.99 1.0
2.5 mm−1 0.86 0.88 0.89 0.90
5.0 mm−1 0.65 0.70 0.67 0.71

MW2
sCN Axisd

MW2
sLR Axisd

MW4
sCN Axisd

MW4
sLR Axisd

0.2 MTF 11.1 mm−1 11.4 mm−1 11.2 mm−1 11.5 mm−1

0.1 MTF 12.9 mm−1 13.2 mm−1 12.9 mm−1 13.3 mm−1

0.5 mm−1 0.98 0.99 0.99 0.99
2.5 mm−1 0.86 0.87 0.88 0.89
5.0 mm−1 0.65 0.67 0.67 0.68

r

FIG. 5. Two-dimensional NNPS for RQA-M2 beam quality at 1.58mC/kg
exposure. The image is shown in a logarithmic scale. Nonstochastic n

-observed in a frequency band along the CN frequency axis.
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and tungsten curves diverged for the LR axis. For refere
Fig. 4 also displays the pixel aperture function and the
oretical limit calculated by Yorkeret al.18

Figure 5 shows an example of a two-dimensional NN
displayed in a logarithmic scalesRQA-M2 technique
1.58mC/kgd. The figure demonstrates nonstochastic nois
the CN direction along a band of 0.112 mm−1 in width. Simi-
lar behavior was observed for other exposures and b
qualities. Figure 6 illustrates the radial NNPS multiplied
exposure. As discussed in Sec. II E, the product of N
and exposure should remain constant for strictly quan
limited detectors, however, the results showed notable e
sure dependencies. For lower exposures, the magnitu
this metric decreased to some minimum value as on
creased exposure. For several techniques, the magnitu
the metric increased at higher exposures.

Figure 7 illustrates the NNPS calculated through the b
ground subtraction method. The background subtra
method noticeably reduced the low-frequency noise. In a

FIG. 6. Radial traces of NNPS multiplied by exposure forsad
tion, the overall magnitude of the NNPS decreased. One

Medical Physics, Vol. 32, No. 2, February 2005
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FIG. 7. Radial traces of NNPS multiplied by exposure obtained with
without background subtraction method. The NNPS was obtained
RQA-M2 technique at 12.6mC/kg. The background subtraction routine

duced the low-frequency noise and lowered overall noise.



FIG. 8. DQE averaged over CN and LR axes forsad RQA-M2, sbd RQA-M4, scd MW2, andsdd MW4 beam qualities.
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TABLE IV. Detector DQE along thestopd CN axis andsbottomd LR axes. As the low-frequency noise caused
peaks in the DQE, the table reports the maximum DQE value and the frequency at which this maximum occurs.

RQA-M2
s1.60mC/kgd

RQA-M4
s2.79mC/kgd

MW2
s1.90mC/kgd

MW4
s1.94mC/kgd

Background subtracted
RQA-M2

s12.6mC/kgd

0.15 mm−1 46% 59% 46% 50% 73%
2.5 mm−1 49% 55% 61% 66% 64%
5.0 mm−1 31% 36% 41% 44% 44%

Peak 55%
1.25 mm−1

63%
0.85 mm−1

66%
1.55 mm−1

77%
0.85 mm−1

73%
0.15 mm−1

RQA-M2
s1.60mC/kgd

RQA-M4
s2.79mC/kgd

MW2
s1.90mC/kgd

MW4
s1.94mC/kgd

Background subtracted
RQA-M2

s12.6mC/kgd

0.15 mm−1 47% 59% 47% 52% 77%
2.5 mm−1 50% 57% 61% 70% 68%
5.0 mm−1 34% 41% 41% 47% 49%

Peak 53%
1.45 mm−1

63%
0.95 mm−1

63%
1.85 mm−1

77%
0.85 mm

77%
0.15 mm−1
Medical Physics, Vol. 32, No. 2, February 2005
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should note that the noise was corrected for the chan
noise variance due to the subtraction technique, as disc
in Sec. II E.

Figure 8 shows the DQE measured for all technique
the axial sthe average of CN and LR axesd direction. The
DQE curves showed low frequency peaking, in that the D
exhibited a sharp increase at lower frequencies. The s
low-frequency component of the NNPS led to this unu
behavior. Moreover, the DQE increased with exposure
lower exposure values, reached a peak value, and the
creased for higher exposures. This was also expected
the behavior of the NNPS. The DQE is summarized in T
IV for all four techniques along both CN and LR axes.

To separate the fixed pattern noise from quantum n
effects, the DQE was calculated with the background
traction method. Figure 9 illustrates the DQE computed
this method in the axial direction. By eliminating the fix
pattern noise, the low-frequency peaking in the DQE
removed and the overall efficiency increased. This fig
also includes the theoretical DQE calculated for a sim
detector for references200 µm selenium layer, 85µm pixel
sized.46

The results from lag measurements are summarize
Table V. In general, the image lag for the detector passe
test established by IEC 62220-1. An interesting phenom
occurred for the fourth tests75 µGy exposure, 5 min deca
timed. The residual signal level was unacceptably high
this test, even though a similar tests75 µGy exposure, 3 mi
decay timed produced acceptable levels of residual signa

IV. DISCUSSION

Digital mammography has begun to replace screen
systems in some clinical settings. The motivation for

FIG. 9. DQE calculated using background subtraction method average
the CN and LR axes. The DQE was computed for RQA-M2 techniqu
12.6mC/kg. The background subtraction routine reduced the low frequ
peaking. The plot also shows a theoretical estimation of the DQEsRef. 46d
for a similar detectors200 µm selenium layer, 85µm pixel sized.
change includes several logistical considerations, such a
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convenient archiving and display, and potential image qu
advantages. The two flat-panel technologies currently
fered, direct and indirect, vary markedly in terms of th
image quality characteristics. Direct detectors tend to e
higher resolution than indirect detectors. However, they
often less efficient than their indirect counterparts.9,10 In this
study, we evaluated all physical properties of a partic
direct flat-panel detector, including resolution, noise, an
ficiency, to enable a thorough comparison between tha
tector and others.

Several other investigators have examined the phy
characteristics of flat-panel mammographic imagers
such, the results from this system characterization mu
reported in the context of the performance of other syst
When considering previous measurements, one should
any differences in beam energies and filtrations. Most
studies utilized molybdenum anodes with molybdenum
tration at 28 kVp, but often utilized a breast equivalent ph
tom for further filtration.18,46–49While this should still allow
for reasonable comparisons between MTFs, these differ
would make comparisons of DQE curves more challeng

Compared to previous measurements of indirect flat-p
imagers,47,48 the current system exhibited a higher MTF.
low frequencies, our MTF was similar to other direct fl
panel imagers, but our MTF was higher at hig
frequencies.46,49As the pixel size served as the primary l
iter of the resolution of a direct detector, with some blur
effects from backscatter and reabsorption ofK x-rays, the
similarity between direct detectors was reasonable. At s
lar exposures, the DQE of the system was generally h
than that of indirect flat-panel imagers, although the l
frequency peaking complicated this comparison.47 In com-
parison to the work by Jee, the High LightsHLd output con
figuration produced a higher DQE but the High Resolu
sHRd configuration appeared to produce a lower DQE
our current system.48 The direct detector evaluated by Zh
produced a generally higher DQE, with constant behavio
different exposures, although there were significant di

46

TABLE V. Lag properties of the detector. The lag tests were executed
order shown in the table, with the top three rows measuring signal rete
after a 3 mindecay time, then a gap of 10 mins, and the bottom three
measured signal retention after a 5 min delay time. The metric corresp
to IEC 62220-1 with values less than 0.005 acceptable under the IEC
lines.

Test Number
Exposure

sµGyd
Decay time

smind Metric
Acceptable residua

signal?

1 75 3 0.002 Yes
2 150 3 0.0048 Yes
3 200 3 0.0044 Yes

Ten minute wait

4 75 5 0.047 No
5 150 5 0.013 No
6 200 5 0.0022 Yes

r

sences between the axes.One interesting result was that
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FIG. 10. Example image of uniform beam of radiationsad before andsbd after the application of a secondary gain correction from the average of 10 im
The larger imagessphysical size: 23.3 cm328.7 cmd show the differences in large-scale gain nonuniformities. Zoomed portion of the imagess2.1 cm
32.1 cmd highlighting pixel artifactsscd before andsdd after gain calibration. The gain calibration largely removes the pixel artifacts from the indi

images.

Medical Physics, Vol. 32, No. 2, February 2005
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some previous studies on selenium detector systems46,49have
also observed some low-frequency peaking in the DQE
though it was less pronounced than that observed in
study.

Yorker et al. have published the MTF and DQE measu
ments of a similar mammographic detector with an iden
pixel size.18 That study examined the MTF and DQE for o
radiographic technique using a molybdenum anode ope
at 28 kVp with molybdenum filtration. The reported MTF
this technique was very similar to our measured MTF
quired at the RQA-M2 technique. At similar exposures,
DQE acquired at RQA-M2 also appeared comparable to
of Yorker et al. However, given the fact that Yorkeret al.
used a 4.2 cm breast phantom filter in the beam, quantit
comparisons are not straightforward.

Several researchers have explored the theoretical pr
ties of selenium-based flat-panel imagers operated at m
mographic energies. The properties of this system comp
favorably with these theoretical calculations. As shown
Figs. 4sad and 4sbd, the MTF of this system remained close
the theoretical limit, as calculated by Yorkeret al.18 When
using the background subtraction method to remove
pattern noise, the DQE of the system appeared similar
theoretical value for a similar detector.46 The difference be
tween the theoretical and experimental values were l
due to the assumptions behind the theoretical calcula
which assumed a 200µm selenium layer and 85µm pixel
size. These theoretical calculations should underestima
actual detector efficiency, as a larger selenium layer
more efficiently capture x-ray photons and a smaller p
size should boost the higher frequency portions of the D
Notwithstanding, the experimental results for the MTF
DQE largely agreed with their theoretical values.

This prototype detector had very favorable resolu
properties, as shown by its MTF. There was an asymme

FIG. 11. Radial traces of NNPS multiplied by exposure obtained with
without background subtraction method for a second prototype detecto
NNPS was obtained using RQA-M2 technique at 7.67mC/kg. As with the
prototype system, this detector unit also exhibits significant stochastic
the MTF, however, as the tungsten and molybdenum curve

Medical Physics, Vol. 32, No. 2, February 2005
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overlapped for the CN axis but diverged for the LR axis.
difference might be attributed to the differences between
focal spots for the two anodes, in terms of both shape
location. The impact of focal spot blur should be minima
the edge was placed directly on the detector. Further
remains needed to evaluate the focal spot properties for
anode varieties and to determine whether this phenom
occurs with different tubes.

The prototype detector did show significant structu
noise contributions. This could be decomposed into two
tors: sad low frequency trending over the image andsbd pixel
artifacts. The trending was expressed as a strong
frequency component of the NNPS. In contrast, pixel
facts were similar to delta functions and elevated all freq
cies of the NNPS. A background subtraction met
eliminated both of these factors, so one was unable to d
mine the relative magnitude of either individually. Theref
when one compared the NNPS calculated using
background-subtraction technique to that calculated u
standard techniques, one noticed a decrease in the
frequency noise contribution as well as an overall decrea
the magnitude of the NNPS. This was reflected in the D
as well. When the DQE was calculated using backgro
subtraction techniques, the sharp low-frequency drop
eliminated and the overall curve was shifted upwards
cause of the decrease in noise.

Several of these noise concerns could be mitigate
additional gain calibration after the gain calibration p
formed by the system. To examine the benefits of fur
gain calibration, a gain map was created by averaging
uniform images together. This gain map was then applie
a subsequently acquired image. The effect of the gain
bration is shown in Fig. 10 and displayed with identical w
dow and level settings. The prominent trending was gre
diminished and many of the pixel artifacts were elimina
To assess whether the problem observed was unique
prototype detector tested, a follow-up experiment was
ducted on a more recent prototype device to learn whet
exhibited noise properties similar to the earlier protot
This experiment compared the NNPS calculated with
without the background subtraction methodology, as sh
in Fig. 11. The background subtraction proved to simil
remove significant nonuniformities, which indicated that
images after system gain calibration retained substa
structured noise in the second prototype as well.

The detector was evaluated for four different beam q
ties. Two beams used a molybdenum anode with moly
num filtration and two used a tungsten anode with rhod
filtration. The tungsten beam qualities were developed
cifically for this study and inspired by IEC standards.
detector appeared to be slightly more sensitive to the
sten beams, as shown in the exposure-pixel value rela
ship. Moreover, the DQEs for the tungsten beams
higher than those for the molybdenum beams, although
was obscured by the peaking in the DQE curves. This
gests that tungsten beams might produce higher qualit
ages with digital detectors than the traditional molybde

e

.

sbeams.



e im
ele
tion
h o

It
ecto
er

r a
are

l re-

for a
rect-
nium
tron
hib-
tor
ima
, un
cor

this
ing

c sy
ctor

rey
ns
for

up-
and

ter,
ed.

cers

adi-

g-
.

roc.

hy,”

ctor
ed.

of

Z. S.

tor,”

ved

iog-
.

and
ntum
diol-

u,
and

ct-

l char-
etec-

and
ctor

op-
s,”

d S.
licon,

era

ec-

cy-
ors,”

adio-

and
SPIE

g
.,

ital
and le-

la-
mo-

ique
tem
erage

tel-
tube
ose in

half-

-ray
acter-

ctor

598 Saunders et al. : Physical characterization of selenium-based mammography detector 598
Using the parameters established by IEC 62220-1, th
age lag appeared within reasonable parameters. Neverth
high exposures led to unusual behavior in signal reten
affecting other exposures even after a significant lengt
time. Ten minutes before the fourth lag tests75 µGy expo-
sure, 5 min decay timed, a 200µGy lag test was conducted.
appeared that this high exposure still affected the det
after 10 mins, as a 75µGy exposure should not have high
residual signal after a 5 min decay time than it would afte
3 min decay time. The mechanisms for this behavior
unknown and suggest additional investigation into signa
tention properties of selenium.

V. CONCLUSIONS

This study reported an assessment of image quality
prototype mammographic imager based on a di
detection, flat-panel array employing an amorphous sele
converter. The results indicated that the detector had s
potential for capturing high-frequency information, as ex
ited by its high MTF. In addition, the DQE of the detec
approached the high value of 75%–80%. Yet, subopt
calibration affected the DQE performance of the system
derscoring the importance of careful gain and dead pixel
rections in reducing detector nonuniformities. Finally,
study introduced two new radiographic techniques utiliz
tungsten anodes for the assessment of mammographi
tems, which will facilitate the future comparisons of dete
characteristics operated with tungsten anodes.
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ABSTRACT 
 

For diagnosis of breast cancer by mammography, the mammograms must be viewed by a radiologist.  The purpose 

of this study was to determine the effect of display resolution on the specific clinical task of detection of breast 

lesions by a human observer.   Using simulation techniques, this study proceeded through four stages.  First, we 

inserted simulated masses and calcifications into raw digital mammograms.  The resulting images were processed 

according to standard image processing techniques and appropriately windowed and leveled.  The processed images 

were blurred according to MTFs measured from a clinical Cathode Ray Tube display.  JNDMetrix, a Visual 

Discrimination Model, examined the images to estimate human detection.  The model results suggested that 

detection of masses and calcifications decreased under standard CRT resolution.  Future work will confirm these 

results with human observer studies.  (This work was supported by grants NIH R21-CA95308 and USAMRMC 

W81XWH-04-1-0323.)   

 

Keywords: Image Quality, Mammography, Simulation, Task-Based Assessment 

 

 

1. INTRODUCTION 
 

After a digital mammogram has been acquired, a human observer must view the data in order to detect or diagnose 

disease.  The display device, therefore, assumes a crucial role in the imaging chain.  While several researchers have 

given significant attention to the quality of image acquisition,
1-9

 fewer investigators have measured the impact of 

display devices.
10-13

  To understand this impact, studies must evaluate the physical properties of these devices.  

However, while physical characterization remains important, display quality must ultimately be described in terms 

of the clinical task in question.
14-16

  This study considered this type of question, examining the impact of display 

resolution on the detection of mammographic lesions. 

 

A Cathode Ray Tube (CRT) display serves as a common mammographic display device.
17

  As a CRT ages, its 

resolution becomes progressively more degraded, leading to lower display quality over time.
18

  The purpose of this 

study was to consider how this degradation in resolution impacted the clinical utility of a CRT display, specifically 

the detection of breast masses and calcifications. 

 

2. METHODS AND MATERIALS 
 

In this study, first simulated masses and calcifications were inserted into digital mammograms.  We applied basic 

image processing techniques to these images and adjusted the window and level appropriately.  Next, we blurred the 

images according to three different resolution settings measured from a CRT display.  Finally, a model observer 

viewed each of these images to estimate the detection probabilities under each blur setting.  The following describes 

the details of these steps. 

 

2.1 Acquisition of Digital Mammographic Backgrounds 

Digital mammographic images were acquired on a clinical flat-panel cesium iodide-based digital mammography 

system (Senographe 2000D, GE Medical Systems, Milwaukee, WI).  Previous studies have characterized the 



physical characteristics of this digital mammography system.
19, 20

  Images used in this study were normal 

craniocaudul view mammograms acquired with a molybdenum anode with molybdenum or rhodium filtration.  The 

beam energies for the images ranged from 25 to 30 kVp and compressed breast thicknesses extended from 2.7 cm to 

7.3 cm with varying glandular and adipose tissue composition.     

 

2.2 Lesion Simulation 

Simulated breast lesions were placed in the center of mammographic images using an established procedure for 

simulating masses and calcifications with attributes similar to those of real mammographic lesions.
21, 22

  Breast mass 

simulation proceeded through three stages, as illustrated in Figure 1.  The first stage sets each pixel of an array to its 

equivalent major axis value,  
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where (x0, y0) represent the center of the mass, α determines the angular orientation of the mass, and c corresponds 

to the ratio of the minor axis length to the major axis length.  The second stage introduced non-uniformities in the 

mass border by multiplying the elliptical rings with a border deviation profile with a given variance and power 

spectrum.  The final stage converted the equivalent major axis values to detector gray level values through the 

elliptical trace function.   

 

The calcification procedure similarly required three stages.  The first stage established the distribution of 

calcifications, using either a clustered or linear distribution.  The second stage created individual calcification at 

each point specified by the calcification distribution through a series of morphological thickening and erosion 

operations.  This resulted in a binary mask of the calcifications.  The final stage added the binary mask to a 

background image with the appropriate contrast. 

 

The spatial parameters for the simulation routine were determined from screen-film mammographic data obtained 

through the Digital Database of Screening Mammography.
23

  These parameters remained applicable to digital 

mammographic backgrounds.  However, the lesion contrast must be separately calculated for the digital case as the 

contrast in screen-film images were impacted by varying H&D characteristics.  To determine the appropriate 

contrast for the simulated lesions, the xSpect x-ray simulation program
24

 calculated the unit contrast for both masses 

and calcifications embedded in a 50% glandular/50% adipose breast imaged with a cesium-iodide detector.  The 

contrasts were calculated for a molybdenum anode with molybdenum or rhodium filtration for each kVp and breast 

thickness.  Contrast reduction by scattered radiation was also accounted for using previously published 

measurements.
25

  The lesions were then inserted in mammographic backgrounds with the appropriate contrast and 

spatial features for the given anode, filtration, kVp, and breast thickness.   

 

 
 

FIG. 1  Schematic of mass 

simulation procedure.  The 

three images illustrate the three 

steps in this system. 



 
 

2.3 Image Processing 
Most digital mammography systems employ post-processing algorithms to improve image display.  A common 

technique separates the images into multiple frequency bands to improve contrast for specific frequencies.  This 

study utilized a basic image processing algorithm that enhanced two frequency bands in the image.
26

  The first stage 

augmented the higher frequency content of the image, while the second stage strengthened the content variations.  

The parameters for each stage were determined by visual analysis of the images.  The first stage accentuated the 

sharp detail in the image through an unsharp masking procedure as, 

 

 ( )IIcSFIIUS ⊗Σ−⋅+= )(                         (2)  

 

where I represented the input image, Σ, the Gaussian kernel, had a standard deviation of 0.45 mm and width of 2.8 

mm, and SF(c), the sharpness factor, controlled the level of enhancement.  To boost low contrast objects, a non-

linear function was utilized for SF(c) as,  
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with a gain, G, of 1, a contrast threshold, c0, of 70, a contrast, c, equal to the absolute difference between the blurred 

image and original image, and a slope parameter, p, of 3.  The second stage enhanced the mid-frequency 

components of the image, as 

 

)()()( USUSUSOut IIcCFII ⊗−⋅+⊗= ξξ                        (4) 

 

where ξ  represented a Gaussian kernel with a standard deviation of 4.4 mm and CF(c) controlled the level of 

contrast enhancement.  The function CF(c) had the same functional form as SF(c), but utilized a gain, G, of 1.3.   

 

FIG. 2  Illustration of 

calcification simulation 

routine.  This procedure 

considers each point in 

the distribution and 

creates a unique 

calcification on each 

point. 



Once the images were processed, observers window and level an image in order to produce an acceptable image 

appearance.  To determine the window and level parameters for each mammogram, an experienced mammographer 

windowed and leveled each mammogram individually.  A sigmoid transformation was fit to each window and level 

function, to provide a smooth transition at the extremes of the display pixel values.  This transformation was 

represented as 
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where IOut represented the processed mammogram, δ equaled the center of the sigmoid transition, and σ  established 

the slope of the sigmoid transition.   

 

2.4 Measurement of Display Characteristics 

We measured the resolution properties of a five mega-pixel Cathode Ray Tube (CRT) display system (Barco MGD-

521, p45 phosphor) with a 10-bit graphics controller (Barco 5MP1H).  A charge-coupled device (CCD) camera  

(XCD-SX900, Sony Corporation, Tokyo, Japan) equipped with a macro lens (Rodgen 1:4, 28mm, Rodenstock, 

Munich, Germany) acquired images of line test patterns presented on the display.   Two images from the recent 

TG18 test pattern set (TG18-RV50 and TG18-RH50) supplied a vertical and horizontal line, respectively.
27, 28

  To 

remain in the quasi-linear range of the display, these patterns employed subtle lines, with 12% contrast from the 

background.  We then computed the MTF from these line patterns using established methods.  Full details of the 

measurement methodology has been reported in another publication.
29

  We measured the MTF for the standard 

display resolution setting and two degraded resolution settings using the defocusing feature of the display.  These 

measured MTFs are displayed in Figure 3. 

 

 
 

2.5 Simulation of Image Display 

A Resolution Modification routine, the details of which are disclosed in a previous publication,
30

 simulated the blur 

effects of the CRT display.  This routine altered the resolution of an input image according to an input MTF to 

produce a blurred version of the image.  To accomplish this, the input mammogram was transformed to the 

frequency domain through an FFT.  The frequency content of the image was then filtered by the display MTF.  An 

inverse FFT transformed this modified frequency spectrum back to the spatial domain.  This blurring was performed 

for each display resolution setting to produce multiple versions of each image. 

 

FIG. 3  Measured MTF for a 

CRT display under three different 

resolution settings.  



2.6 Observer Model Experiment 

A 5.12 cm x 5.12 cm region of interest (ROI) was extracted from the central breast area for analysis by a visual 

discrimination model (VDM).  The Sarnoff JNDmetrix
33

 VDM has been used to simulate the effects of display 

characteristics and image processing on the conspicuity of mammographic lesions.
11, 31, 32,34

  For this study, the 

VDM compared a mammogram containing a lesion to the same mammogram without the lesion and computed a 

just-noticeable difference (JND) metric for the discriminability of those images by a human observer.  The VDM 

first convolved the input images by an approximation of the point-spread function of the optics of the eye.  The 

model simulated sampling of the image by retinal cones by performing a Gaussian convolution and then point 

sampling. Next, it computed the local contrast from the raw luminance image.  The model applied a Laplacian 

pyramid to the data in order to isolate five frequency bands from the data.  For each frequency band, the data was 

convolved with eight pairs of spatially oriented filters.  The sensitivities and other parameters for these filters were 

determine by fitting model output to psychophysical data from sine-grating detection and discrimination 

experiments.  The model squared each pair of filter output images and summed them to provide a phase-independent 

response.  Next, the transducer stage derived the energy for each frequency band, normalizing this energy by the 

square of the appropriate grating contrast detection threshold.  A sigmoid function was applied to each frequency 

bands to account for the visual contrast discrimination function.   The model incorporated the foveal sensitivity by 

averaging the outputs from the transducer step using a disk kernel.  The final product of the model was a two-

dimensional map of JND values, where each pixel indicated the discriminability of the two input images.   

 

3. RESULTS 
 

Figure 4 illustrates the results when the VDM discriminates between mammographic images with simulated benign 

masses and those without simulated benign masses.  The perfect resolution refers to images without any display 

blur, while the other three resolution settings refer to the measured MTFs in Figure 3.  As expected, the model was 

better able to detect masses without any display blur.  The difference between the three display blur settings 

remained much more modest. 
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Figure 5 illustrates the results when the VDM discriminates between mammographic images with simulated fine 

linear branching calcifications and those without simulated calcifications.  The nomenclature in Figure 5 remains 

consistent with Figure 4.  As expected, the model had a greater ability to detect these calcifications without any 

display blur.  However, as the resolution of the CRT degrades, the detectability of calcifications decreased 

significantly.  Similar model results were obtained for images with pleomorphic calcifications.   

FIG. 4  JND Aggregate Measure 

(JAM) from the VDM comparing 

mammographic backgrounds with 

and without simulated benign 

masses for four different resolution 

settings.  The benign masses had 

an average diameter of 3 mm.  The 

error bars represent the 95% 

Confidence Interval.  
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4. DISCUSSION AND CONCLUSIONS 
 

This study evaluated the impact of display blur on the detection of mammographic masses and calcifications.  As an 

initial step, this study utilized a visual discrimination model to estimate detection by a human observer.  These initial 

results suggested that detection of masses and calcifications decreased with standard CRT resolution.  In addition, 

the model implies that the detection of calcifications, but not masses, declined as the resolution of the CRT degraded 

over time.  This prediction seems reasonable because the conspicuity of small, fine structures in calcifications are 

more likely than larger objects, such as masses, to be affected by reductions in display resolution.  The next phase of 

modeling will use VDM output to predict signal detectability within the framework of a channelized model 

observer. Future work must include human observer performance experiments to verify these estimates.  
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Abstract 

 

Lesion simulation provides a tool when quantifying the utility of an imaging system in a 

detection task.  For mammography, the important detection tasks are detecting breast masses and 

calcifications.  In this study, we characterized the radiographic appearance of both masses and 

calcifications from images obtained from the Digital Database of Screening Mammography 

(DDSM).  The characterization results were then used in a routine capable of creating simulated 

masses and calcifications.  To verify the quality of this simulation routine, an observer 

performance experiment was conducted in which an observer was asked to discriminate between 

real and simulated lesions.  The results were then analyzed using ROC analysis.  The preliminary 

results showed an Az of 0.59 for benign masses, 0.61 for malignant masses, and 0.58 for 

malignant calcifications.  More observer studies are underway to enhance the statistical power of 

these results.   (This work was supported by a grant from the NIH, R21-CA95308 and 

USAMRMC W81XWH-04-1-0323.)   

1. Introduction 

 

A number of new full-field digital mammography systems with varying attributes have entered 

the clinical arena.  It is important, therefore, to discover which systems are most appropriate for 

mammographic imaging.  As the detection of breast cancer is the key task in mammography, a 

system should be judged in how well it aids in that task.  Simulation techniques significantly 

facilitate such evaluations for a variety of detectors, breast densities, and lesion types.   



One hurdle faced by mammography simulation is the lack of breast lesion models.  For masses, 

previous work has used gaussian profiles, disks, and simulated lung nodule profiles. 
1-4

  For 

calcifications, the most common model has been to utilize masks extracted from real 

calcifications.
5, 6

  This study adopted a different approach.  First, we characterized the 

radiographic appearance of breast masses and calcifications from real mammograms.  Then, we 

created simulated breast masses and calcifications emulating those characteristics.  Our mass 

model was previously validated through a preliminary observer performance experiment.
7
  This 

paper extends that work to microcalcifications. 

2. Lesion Characterization 

 

2.1 Breast Mass Characterization Procedure 

 

Four categories of breast masses were chosen for characterization using the BI-RADS
®

 lexicon.
8
  

Two types were typically benign, oval circumscribed and oval obscured masses, and two were 

typically malignant, irregular ill-defined and irregular spiculated.  Sample mammograms 

containing these lesions were extracted from the University of South Florida’s Digital Database 

for Screening Mammography (DDSM).
9
  Characterization was performed on a 2.56 cm x 2.56 

cm region of interest (ROI) surrounding the mass.  All ROIs were converted to optical density 

values using the characteristic curve of the scanner.  

The behavior of the masses was determined through a large-scale analysis and a small-scale 

analysis.  The large-scale behavior was characterized through an elliptical trace, which examined 

the changes in optical density through concentric elliptical rings.  The small-scale behavior was 

measured through a deviation profile that measured how the border of the lesion varied from an 

ellipse.  These are shown graphically in figure 1. 



       

Fig. 1.  The elliptical trace, left, characterizes the large-scale behavior of the mass.  The small-

scale behavior is shown in the border deviation profile, right. 

2.2 Breast Mass Characterization Results 

Example characterization results for typically benign masses are shown in figure 2.    The 

elliptical trace showed a sharp transition from the mass to the background, which was expected 

for a circumscribed border.  The border deviation profile showed some deviations from the 

perfect ellipse, but the magnitude was fairly small.  This was in contrast to the results for 

typically malignant masses, an example of which is shown in figure 3.  The elliptical trace for 

these masses showed a very slow transition from the mass to the background.  The border 

deviation profile illustrated strong deviations from the perfect ellipse.  This was expected as the 

borders are ill-defined and the shape was irregular. 

   
FIG. 2. Example characterization results for benign masses.  The elliptical trace, left, shows a 

strong transition from mass to background while the border deviation profile, right, shows small 

deviations from the perfect ellipse. 



   
FIG. 3.  Example characterization results for malignant masses.  The elliptical trace, left, shows a 

smooth transition to background, and the border deviation profile, right, shows marked 

deviations from the perfect ellipse. 

2.3 Calcification Characterization Procedure 

Two categories of calcifications were chosen based on the BI-RADS
®

 lexicon.
8
  The two 

categories were fine linear branching and pleomorphic, referring to typically malignant lesions.  

The distribution studied for fine branching calcifications was linear, while the distribution 

studied for pleomorphic was clustered.  Similar to masses, sample mammograms were drawn 

from the DDSM database.   

To characterize the calcifications, a mask of the distribution was drawn.  Measurements were 

then made on this binary mask.  Three properties were measured for the individual calcifications: 

the major axis, minor axis, and the average contrast.  Furthermore, the distributions for each 

calcification type were measured.  For pleomorphic calcifications, the major axis and minor axis 

of the cluster were measured.  For fine linear branching calcifications, the lengths of the lines 

were measured along with the angle between the lines of calcifications.   



2.4 Calcification Characterization Results 

The results from the calcification characterization are shown in table 1.  The individual 

calcifications results were similar for both pleomorphic and fine linear branching categories.  

The distribution results established the mean shape for each distribution. 

Table 1. Summary of calcification characterization results 

Calcifications: Pleomorphic Fine Linear Branching 

Major Axis (mm) 0.47 ± 0.11 0.43 ±0.13 

Minor Axis (mm) 0.29 ±0.057 0.26 ± 0.045 

Contrast 0.22 ± 0.13 0.34 ± 0.16 

Distribution:   

Major Axis (mm) 8.0 ± 3.5 n/a 

Minor Axis (mm) 7.1 ± 3.2 n/a 

Line Length (mm) n/a 6.2 ± 2.3 

Angle (degrees) n/a 50.8 ± 11.2 

 

3. Lesion Simulation 

 

3.1 Mass Simulation 

 

The mass simulation routine began with an array where each pixel was set equal to its equivalent 

major axis value (given the eccentricity and center location).  The border deviation effects were 

then applied to this array.  Finally, the array was transformed to optical density using the 

elliptical trace profile.  This is shown graphically in figure 4.  Example masses are shown 

imbedded in backgrounds in figure 5.  

 

                                                 



FIG. 4.  Graphical overview of mass simulation procedure.  The image on left shows an array 

with pixel values equal to their equivalent major axis value.  The border deviations are 

introduced in the center image.  Finally, the image is transformed to optical density through the 

elliptical trace profile, which results in the final image on the right. 

 

      
FIG. 5.  Example simulated masses.  The image on the left is a simulated benign mass, while the 

image on the right is a simulated malignant mass with an ill-defined border. 

 

3.2 Calcification Simulation 

 

The measured distribution results established a probability distribution for the individual 

calcification centers.  For the pleomorphic category, the centers had a uniform probability 

density within an ellipse with a given major axis and minor axis length.  For the fine, linear 

branching case, the centers had a uniform probability distribution along lines with a given mean 

length and relative angle between lines. 

Given the desired number of individual calcifications, the simulation program sampled these 

distributions to determine the location of the centers of the individual calcifications.  For each 

individual calcification, a line was drawn through this center at a random angle.  The length of 

this line was equal to the major axis length of the individual calcifications.  A morphological 

thickening operation was then applied, followed by a morphological eroding.  These produced 

the shapes of the individual calcifications.  The calcification distribution was then added to a 

normal background with a given contrast.  Example simulated calcifications were shown in 

figure 6. 



             
FIG. 6.  Example simulated calcifications.  The left image shows a simulated pleomorphic 

distribution, while the center and right image show simulated fine, linear branching 

calcifications. 

 

4. Observer Performance Experiment 

 

4.1 Observer Protocol 

 

To determine the quality of the simulation routines, an observer performance experiment was 

conducted.  In this study, an experienced mammographer was asked to rate their confidence in 

whether a lesion was definitely real or definitely simulated.  The simulation routine would be 

effective if a mammographer was unable to distinguish the difference between the simulated and 

real lesions.  As this was a preliminary experiment, only one mammographer was used. 

4.2 Observer Results 

The histograms for the observer results for masses are shown in figure 7.  In general, the 

distributions for real and simulated masses overlap considerably.  The histogram for 

calcifications is shown in figure 8.  Again, the histograms for real and simulated lesions overlap 

considerably. 
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FIG. 7.  Histograms of the rating frequency versus rating value for real and simulated masses.  

The results for typically benign masses are shown on the top while the typically malignant mass 

results are shown on the bottom.  The typically malignant masses are further separated by border 

type for real and simulated masses.  
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FIG. 8.  Histogram of the rating frequency versus rating value for calcifications.   

 

 

To quantify the degree of overlap, a Receiver Operating Characteristic Analysis was 

performed.
10

  In this case, an Az of 0.5 indicates that an observer was near chance in 

discriminating between real and simulated lesions.  This analysis is summarized in table 2.     

Table 2.  Summary of ROC Analysis for discrimination between real and simulated lesions. 

 Az σσσσ 

Benign Masses 0.59 0.08 

Malignant Masses 0.61 0.07 

Malignant Calcifications 0.58 0.07 

 

 

5. Conclusions 

 

The characterization procedure undertaken in this study introduces a new way to describe breast 

lesions.  The data from this characterization was then used in a new simulation routine that is 

capable of simulating breast masses and calcifications.  Results from a preliminary observer 

performance experiment on these simulations indicate that our simulation routine produces high 

quality simulations of breast masses and calcifications.  Further work is needed to validate the 

results of this preliminary observer performance experiment.   
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Abstract 

Digital mammography has the potential to improve image quality for mammographic imaging.  

This study evaluated a selenium-based direct full-field digital mammographic imager (70 µm 

pixels) using a molybdenum anode operated at 28 kVp with inherent filtration of 30 µm 

molybdenum and an additional 2 mm of aluminum filtration.  To capture the detector resolution, 

we measured the presampled modulation transfer function (MTF) using an edge method. The 

noise, summarized through the Normalized Noise Power Spectrum (NNPS), was measured by 

two-dimensional Fourier analysis of uniformly exposed radiographs.  The detective quantum 

efficiency (DQE) was then computed from the measured MTF, NNPS, and ideal signal-to-noise 

ratio.  For the Left-Right axis, the MTF reached the value of 0.2 and 0.1 at 12.7 mm
-1 

and 14.8 

mm
-1

, respectively.  The DQE attained a maximum value of 53% at 1.45 mm
-1

for the Left-Right 

axis.  However, the DQE showed a strong dependence on exposure and frequency.  The results 

indicated that this detector has high resolution, but it may be valuable to remove structured noise 

through improved calibration before clinical implementation. (The full data for this study are 

published as  R.S. Saunders, Jr, E. Samei, J.L. Jesneck, and J.Y. Lo, "Physical characterization of 

a prototype selenium-based full field digital mammography detector," Med. Phys. 32(2) (2005). 



1. Introduction 

The purpose of this work was to evaluate the physical characteristics of a selenium full-field 

digital mammography (FFDM) detector.  Three different metrics of system performance were 

evaluated: the Modulation Transfer Function (MTF), Normalized Noise Power Spectrum 

(NNPS), and Detective Quantum Efficiency (DQE).  As previous research has shown that 

selenium detectors can exhibit image lag and ghosting,
1
 this research also examined the lag 

performance of the detector.       

2. Methods and Materials 

2.1 Detector Description 

The detector investigated in this study was a selenium-based flat-panel detector (Siemens 

Medical Systems, Erlangen, Germany).  The detector was based on a 250 µm selenium 

photoconductive layer coupled to a storage capacitor and amorphous selenium switching 

transistor.
2
  The active detector area was 23.296 cm x 28.672 cm consisting of 3328 x 4096 

square pixels with a 70 µm pixel pitch.  Prior to evaluation, the antiscatter grid supplied with the 

system was removed and gain and dead pixel corrections were performed according to 

manufacturer specifications.  For most measurements, the standard detector cover was kept in 

place and the compression paddle was removed.  For the MTF measurements, the detector cover 

was removed so that the edge device could be placed in contact with the detector. 

2.2 Image Acquisition 

The selenium detector was coupled to a high frequency multiphase x-ray generator (Mammomat 

Novation) for which the high-voltage accuracy was certified to be within ±5%.  All images were 



acquired with a large focal spot of 0.3 mm, nominal.  We used the RQA-M2 technique, 
3
, which 

employed a molybdenum anode operated at 28 kVp, 30 µm molybdenum inherent filtration, and 

2 mm aluminum added filtration.  The image data were acquired in a raw format without any 

image post-processing applied. After acquisition, the images were transferred to a research 

computer as 14-bit, raw data for analysis. 

For all image acquisitions, the exposure to the detector was measured free in air using a 

calibrated ionization chamber (1515 x-ray monitor with 10X5-6M dedicated mammography 

ionization chamber, Radcal Corporation, Monrovia, CA). The chamber was placed 17 cm above 

the detector to minimize contributions from backscatter.  The exposure incident on the detector 

at 65 cm source to image distance (SID) was estimated from the measured exposure using the 

inverse-square law. 

2.3 Linearity 

The linearity of the detector was determined by exposing the detector to a wide range of uniform 

x-ray exposures for each of the radiographic techniques described above. The average pixel 

values were computed from a 14.3 x 14.3 cm region located near the chest wall section of the 

detector.  From this, the relationships between mean pixel value and exposure were ascertained. 

2.4 Modulation Transfer Function 

The presampled MTF was measured using an edge method similar to that reported elsewhere.
4-9

  

A sharp edge test device, consisting of a polished 0.1 mm platinum-iridium edge, was placed in 

contact with the detector at 1 cm from the chest wall edge of the detector. The device was 

oriented with a 5–10 degree angle with respect to the pixel array.  An image of the edge device 



was then acquired using an exposure of 16.2 µC/kg  (62.6 mR).   The presampled modulation 

transfer function (MTF) was then computed from the edge image using a method described in a 

previous publication.
10

  The MTF was computed along two orthogonal directions—the Chest 

Wall-Nipple (CN) axis and the Left-Right (LR), as shown in Figure 1.   

 

 FIG. 1. Coordinate system for measurements 

2.5 Normalized Noise Power Spectrum 

To characterize the system noise, flat-field images were acquired by exposing the detector to a 

uniform x-ray beam.  The exposure was simultaneously measured with the ionization chamber 

reported above.  The Normalized Noise Power Spectrum was then computed from the flat-field 

images using previously published methods.
9, 10

  

2.6 Detective Quantum Efficiency 

The Detective Quantum Efficiency (DQE) was computed using the following equation: 

)(

)(
)(

2

2

uNNPSEq

uMTF
uDQE

Ideal ⋅⋅
=                       (1) 



where MTF(u) represented the presampled modulation transfer function measured above, qIdeal 

corresponded to the signal to noise (SNR) ratio per unit exposure for an ideal energy-integrating 

detector, E was the exposure value at the detector face at which the Normalized Noise Power 

Spectrum, NNPS(u), was measured.
11, 12

  The qIdeal was computed with an x-ray simulation 

program (xSpect, Henry Ford Health
 
System) that utilized a semiempirical model

 
to simulate the 

x-ray spectra
13

 and attenuation effects.
5
 

2.7 Image Lag Measurement 

The magnitude of multiplicative lag was characterized using the procedure described in IEC 

62220-1.
14

  First, an image was acquired of a uniform radiation field.  The second image was 

then acquired of an edge device.  After a specified delay time ∆t, a third image was acquired of a 

uniform radiation field.  The image data were then examined for two regions within the images.  

The first ROI, ROI1, was placed in an area of the images that did not contain the edge device in 

image 2.  The second ROI, ROI2, was placed in an area that was inside the region covered by the 

edge device in image 2.  

 
FIG. 2.  Description of the lag measurement procedure. 



The detector was judged to have acceptable lag effects for time delay ∆t if it passed the 

following criterion
14
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3. Results 
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The large area transfer characteristics of the detector are shown in figure 3.  The detector 

maintains its linearity over two orders of magnitude in exposure.  The MTF is shown in figure 4 

for the CN and LR axis.  The MTF along these axes diverge at higher spatial frequencies.  The 

MTF curves are summarized in Table I for each axis. 

FIG. 3. Plot of mean pixel value 

versus exposure.  The system 

showed a very linear response with 

r
2 

> 0.999.   



FIG. 4. Plot of detector MTF for CN 

and LR axes 

 

 
RQA-M2 

(CN Axis) 
RQA-M2 

(LR Axis) 

0.2 MTF 11.1 mm
-1

 12.7 mm
-1

 

0.1 MTF 12.8 mm
-1

 14.8 mm
-1

 

0.5 mm
-1

 0.983 0.991 

2.5 mm
-1

 0.858 0.877 

5.0 mm
-1

 0.65 0.689 

 

 

Table I.  Summary of the detector’s MTF properties

The radial traces of the NNPS multiplied by exposure are shown in figure 5 for each 

radiographic technique.  The product of NNPS and exposure should remain constant for strictly 

quantum noise-limited detectors.  However, the system exhibited exposure dependencies.  For 

lower exposures, the magnitude of this metric first decreased and then increased with increasing 

exposure.   

             
FIG. 5. Radial trace of NNPS for various exposure levels 

Figure 6 shows the measured DQE.  The DQE curves showed a decline at low frequency, which 

was expected from the strong low-frequency component of the NNPS.  As well, the DQE 

increased with exposure for lower exposure values, reached a peak value, and then decreased for 



higher exposures.  This was also expected from the behavior of the NNPS with exposure.  The 

DQE is summarized in table II. 

        
Fig. 6  Plots of the DQE at various exposures along CN axis, left, and LR axis, right. 

Table II. Detector DQE properties for CN and LR axes at 1.6 µC/kg  (6.2 mR) 

 CN Axis LR Axis 

0.15 mm
-1

 46% 47% 

2.5 mm
-1

 49% 50% 

5.0 mm
-1 

31% 34% 

Peak 
55%  

1.25 mm-1 

53% 

1.45 mm
-1

 

The results from lag measurements are summarized in table III.  The images were acquired in the 

order indicated in table 3, with shorter delay time tests preceding longer delay time tests.  In 

general, the image lag for the detector passed the test established by the IEC (Eq 2).  However, 

an interesting phenomenon occurred for the 75 µGy exposure with 5 minute delay.  A 200 µGy 

exposure was acquired 10 minutes before this exposure.  It appeared that this high exposure still 

affected the detector after 10 minutes, as a 75 µGy exposure should not have caused a larger lag 

contribution after a 5 minute decay time than it would after a 3 minute decay time.   



Table III. Summary of Multiplicative Lag Measurements 

Exposure (µµµµGy) Decay Time (min) Metric Acceptable? 

75 3 0.002 Yes 

150 3 0.0048 Yes 

200 3 0.0044 Yes 

Ten Minute Wait 

75 5 0.047 No 

150 5 0.013 No 

200 5 0.0022 Yes 

 

4. Discussion 

This prototype detector has excellent resolution properties, as shown by its MTF.  There 

appeared to be an asymmetry in the MTF, as it diverged for the CN and LR axes.  As the edge 

device was placed directly on the detector surface, it appeared unlikely that the focal spot caused 

such asymmetries.  Future work is needed to understand the cause of this asymmetry.  The 

prototype showed structured noise contributions, which led to a strong low-frequency 

contribution to the NNPS.  This structured noise also affected the DQE, in that the DQE curves 

had a peak and then decreased for lower frequencies.  Finally, image lag appeared to be within 

the parameters established by IEC 62220-1,
14

 but high exposures led to unusual behavior in 

signal retention, even after a long decay.  This prototype showed excellent promise and it is 

expected that future work will correct the observed structured noise and lag phenomena with a 

more robust calibration technique.   
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